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Abstract

Learning factored transition models of structured environments has been shown
to provide significant leverage when computing optimal policies for tasks within
those environments. Previous work has focused on learning the structure of fac-
tored Markov Decision Processes (MDPs) with finite sets of states and actions.
In this work we present an algorithm for online incremental learning of transition
models of factored MDPs that have continuous, multi-dimensional state and ac-
tion spaces. We use incremental density estimation techniques and information-
theoretic principles to learn a factored model of the transition dynamics of an
FMDP online from a single, continuing trajectory of experience.

1 Introduction

The factored Markov Decision Process (FMDP) is a formalism for sequential decision problems
that allows for the explicit representation of environmental structure not possible in the traditional
Markov Decision Process (MDP). Much work in the reinforcement learning literature has focused
on algorithms that exploit this structure to more efficiently learn or compute optimal solutions to
such problems [1, 2]. In some cases this has allowed for the application of reinforcement learning
techniques to environments much larger than could otherwise be handled feasibly by methods that
do not exploit structure. These approaches generally make use of structure by ignoring regions or
entire dimensions of the state space that are irrelevant to solving a particular task. Many of these
approaches make use of factored transition and reward models to represent these independencies.

The majority of work with FMDPs has focused on discrete environments; i.e., those with a finite
number of states and actions. Some of these approaches have presented methods for learning a
factored transition model online from experience, and for using that model to compute optimal
policies [3, 4, 5]. A smaller body of work has considered computation of optimal policies in FMDPs
with continuous state and action spaces, as well as hybrid environments with both continuous and
discrete components [6]. These methods are offline approaches, however, and assume that access
to an accurate transition model is given a priori. The work presented here provides an algorithm
for learning factored transition and reward models of continuous state and action FMDPs in an
incremental, online fashion, and thus paves the way for applying online methods for learning optimal
policies that make use of these models and their inherent structure.

Our approach uses incremental density estimation techniques and information theoretic principles
to learn these models online from a single trajectory of experience. In the following section we
present relevant background material and outline the formalism for continuous FMDPs that we
adopt. Sections 3 and 4 discuss the details of our approach, and Section 5 presents an empirical
evaluation in a stochastic, structured environment. Finally we summarize our approach and discuss
limitations of the algorithm and future work in Section 6.
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Figure 1: An example DBN for an FMDP with a 3-dimensional observation space and 3-dimensional
action space. Example conditional probability distributions are shown for two variables.

2 Continuous Factored MDPs

A Markov Decision Process (MDP) is a tuple 〈S,A, P,R, γ〉, where S ⊆ <n is a set of states,
A ⊆ <m is a set of actions, P : S × A × S → [0, 1] is a one-step transition model that provides
a distribution over successor states given a current state and action, R : S × A → < is a one-step
expected reward model that specifies the reward an agent receives for taking a given action in a given
state, and γ is a discount factor whose significance is irrelevant to our approach. While in the MDP
formalism the transition function P is necessarily high-dimensional for high-dimensional state and
action spaces, if there is significant structure in the dynamics of the MDP so that the values of certain
dimensions are irrelevant to computing the expected value of others at the following time step, P can
often be represented in factored form. This leads to the factored Markov Decision Process (FMDP)
formalism.

In an FMDP, each dimension of the state space is represented as a random variable Si ∈ S, and
states are thus vectors in <n corresponding to assignments to each of these variables. The transi-
tion and reward models of an FMDP are often represented graphically using a Dynamic Bayesian
Network (DBN) [7]. A DBN is a two-layer directed acyclic graph with nodes in layers one and two
representing the variables of the FMDP at times t and t + 1, respectively (see Figure 1). We will
henceforth denote the set of state variables at time t as S = {S1 . . . Sn} and those at time t + 1
as S′ = {S′1 . . . S′n}. Edges in a DBN represent dependencies between variables. We make the
common assumption that variables within the same layer do not influence each other. While models
of finite FMDPs are often represented with one DBN per action, this is not possible in continuous
FMDPs. Rather we represent these models using a single DBN with a set of action variables A that
influence the state variables at the next time step, as shown in Figure 1.

If we let fX(s,a) denote the projection of state-action pair (s ∈ S,a ∈ A) onto a set of variables X
(i.e., the values the variables in X take on in s and a), fX(s) similarly denote the projection of state
s ∈ S onto X, and Par(Y ) denote the set of parents of variable Y in the DBN, then the transition
function P can be expressed in factored form as

P (s′|s,a) =
n∏
i

P (S′i = fS′
i
(s′)|Par(S′i) = fPar(S′

i
)(s,a)). (1)

This form represents the transition function as the product of several conditional distributions, each
of which may have much lower dimension than the full joint distribution being modeled. It is this
fact that leads to the computational savings associated with these models. Note that the reward model
R can be represented in a similar fashion (the diamond-shaped node in Figure 1). It remains to be
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shown how to represent the component conditional distributions that comprise the full model (right-
hand side of Figure 1). In finite FMDPs, these are often represented as decision trees, one for each
variable, with internal nodes corresponding to the parents of the given variable and leaves containing
probability mass functions corresponding to the conditional distributions. Again, this is not possible
in continuous FMDPs for obvious reasons. The following section presents the representation we
adopt for the conditional density functions and an incremental method for estimating these densities
online, as well as a method for computing mutual information between sets of random variables
modeled by these estimators.

3 Online Incremental Density and Information Estimation

3.1 Density Estimation

There are many choices for the form of density function we may adopt to represent the factors of an
FMDP’s transition model. We choose the mixture of Gaussians (MOG) model for several reasons,
the first being that there are existing methods for both online, incremental estimation of these models
and for efficient computation of their entropies, which we make use of in the following section. Sec-
ondly, these models provide a natural, efficient way of obtaining conditional probabilities from the
joint distributions they represent, which is useful when employing them in reinforcement learning
algorithms. Additionally, it has been shown that given a sufficient number of components, the MOG
model can represent arbitrary densities [8].

A MOG model with k components gives the probability of a vector x ∈ <n as

p(x|Θ) =
k∑
i=1

πipi(x|θi), (2)

where Θ = {θ1, . . . , θk} is a set of parameter vectors, one for each component, πi is the mixing co-
efficient (or prior) of component i, and pi(x|θi) is the component-conditional density of component
i, which is given as

pi(x|θi) =
1

(2π)n/2|Σi|1/2
exp

[
−1

2
(x− µi)TΣ−1

i (x− µi)
]
, (3)

where θi = {µi,Σi} represents the mean vector and covariance matrix of component i.

Learning the parameters of MOG models is a difficult problem with much work devoted to it. While
many approaches use some form of the Expectation-Maximization (EM) algorithm for this task [9],
this solution does not lend itself to an efficient online setting, and has often found to be oversensitive
to parameter initialization. One alternative approach uses a modification to the Self-Organizing Map
(SOM) neural network architecture, called the Self-Organizing Mixture Network (SOMN) [10], to
incrementally update the parameters of the model via a stochastic gradient-descent method. Al-
though the SOMN is more general than a MOG model in that it can make use of non-Gaussian
mixture components, we present here only the details of its operation for the case of Gaussian com-
ponents.

After each new training example is observed, the parameters of a SOMN are updated so as to mini-
mize the Kullback-Leibler divergence between the true (p) and estimated (p̂) densities via stochastic
approximation methods. Let p̂ and p̂i be the SOMN’s estimates of (2) and (3), π̂ti , µ̂

t
i, and Σ̂ti be

the estimates of the prior, mean vector, and covariance matrix of component i, respectively, after
t training examples have been observed, and P̂ (i|x) = πip̂i(x|θi)

p̂(x|Θ) be the posterior probability of
component i given training example x. When a new training example x is observed, the parameters
of each component are updated according to

π̂t+1
i = π̂ti + α[P̂ (i|x)− π̂ti ] (4)

µ̂t+1
i = µ̂ti + β[x− µ̂ti]P̂ (i|x) (5)

Σ̂t+1
i = Σ̂ti + γ[(x− µ̂ti)(x− µ̂ti)T − Σ̂i]P̂ (i|x) (6)

where 0 < α, β, γ < 1 are step size parameters. Alternatively, for computational efficiency a
winning component may be selected based on the posterior probabilities, and only those components
within a local neighborhood of the winner need be updated.
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Experiments with the SOMN have shown that it is very robust to parameter initialization, and so it
is common to initialize the priors evenly (i.e., πi = 1/k, ∀i), the mean vectors randomly, and the
covariance matrices to σI, where I is the identity matrix and σ is a scalar. The SOMN does require
the number of mixture components k to be pre-specified, however, which is a significant limitation.
We discuss possible remedies to this problem in our discussion section.

3.2 Mutual Information Estimation

Given the form of density function described above, we now present a method for incrementally
estimating the mutual information between sets of random variables whose joint distribution is mod-
eled by a SOMN. One way to express the mutual information I(X,Y ) between two (sets of) random
variables X and Y is as a sum of entropies:

I(X,Y ) = H(X) +H(Y )−H(X,Y ), (7)

where for a real-valued random variable X , H(X) = −
∫
p(X) log p(X)dX is the Shannon differ-

ential entropy of X . The joint differential entropy of random variables X and Y is given similarly
as H(X,Y ) = −

∫
p(X,Y ) log p(X,Y )dX dY .

Unfortunately, for our choice of density function, computing mutual information based on Shannon
entropies is infeasible. However, for the case of a MOG density model as we have assumed, there is
an approximation to Shannon entropy that has a particularly nice closed form. This is the quadratic
Renyi entropy, a specific instance of a class of generalized entropies described in [11], and for
random variable X is given as HR2(X) = −

∫
P (X)2dX .

If we let G(x − µi,Σi) represent the value of Gaussian mixture component i evaluated at x, then
note that

∫
X
G(X − µi,Σi)G(X − µj ,Σj)dX = G(µi − µj ,Σi + Σj). Thus, for a mixture of k

Gaussian densities, the quadratic Renyi entropy of the mixture density can be computed as

HR2(X) = − log
∫
P (X)2dX

= − log
∫ ( k∑

i

πiG(X − µi,Σi)

)2

dX

= − log
k∑
i=1

πi

k∑
j=1

πjG(µi − µj ,Σi + Σj), (8)

so that the computation reduces to pairwise interactions between mixture components. Additionally,
only half of these need to be computed in practice because of symmetry.

Although there is a similar closed form for the joint quadratic Renyi entropy of two random variables
we could use to compute mutual information, we will take a slightly different tactic to obtain the
joint entropy. Suppose we have a vector-valued random variable X ∈ <r+s so that X = [X1 X2]T ,
X1 ∈ <r, and X2 ∈ <s. If X ∼ N (µ,Σ) is multivariate Gaussian with µ = [µ1 µ2]T and

Σ =
[

Σ11 Σ12

Σ21 Σ22

]
so that µ1 ∈ <r, µ2 ∈ <s, Σ11 ∈ <r×r, Σ12 ∈ <r×s, Σ21 ∈ <s×r, and

Σ22 ∈ <s×s, then the marginal distribution of X1 is itself a multivariate Gaussian distribution with
mean µ1 and covariance Σ11. The marginal ofX2 is similarly modeled with mean µ2 and covariance
Σ22.

This means that we may obtain the joint entropy between two (sets of) variablesX and Y by model-
ing their joint distribution explicitly, and their marginal entropies by applying (8) to the appropriate
marginal distributions obtained from the joint, as just described. We will use this fact when evaluat-
ing potential dependencies in a DBN, as described in the following section.

4 Online Incremental Structure Learning

We now turn to our application of the techniques outlined so far to the problem of incremental
structure learning in FMDPs with continuous states and actions. Previous work on learning factored
transition models of finite FMDPs has taken the approach of adding dependencies to a DBN model
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of an FMDP one at a time when the mutual information between two variables is significantly high
[3, 12]. We take a similar approach, although our techniques will be different because we are dealing
with continuous states and actions.

Recall that mutual information can be expressed as a difference between the sum of two marginal
entropies and their joint entropy, as in (7). Let S′+i = S′i ∪ Par(S′i) be the union of a state variable
S′i ∈ S′ in the DBN at time t+ 1 and its set of parents (in S ∪A) at time t. Our strategy will be to
maintain, for each S′i, an estimate of the information between S′+i and each other state and action
variable in S∪A not already in Par(S′i). We term each of these extra variables a candidate variable,
and whenever the information between a candidate variable and S′+i exceeds a pre-specified value,
we add that variable to Par(S′i) and remove it from the list of candidate variables for S′i.

In order to do this we will maintain an estimate of the joint distribution of each possible combination
of S′+i and candidate variable X ∈ (S ∪A) − Par(S′i). This initially requires the instantiation of
n2m SOMN models (nm models per state variable), where n and m are the dimensionalities of
the state and action spaces of the FMDP, respectively. At time step t, each SOMN modeling a
distribution containing S′i is given a training example that is the concatenation of the values in the
previous state and action vector corresponding to the current parents of S′i and that distribution’s
associated candidate variable, and the value of S′i in the current state vector. Initially this will
result in the estimation of the joint distributions corresponding to each element of S′× (S∪A). The
techniques described in Section 3 now provide us with the means to compute the mutual information
between each S′+i and each of its candidate variables from these joint distributions.

Algorithm 1 LearnStructure
Initialization:
M← {}
for each S′i ∈ S′ do

for each X ∈ S ∪A do
initialize a 2-dimensional SOMN mS′

i
,X to model p(S′+i , X)

M←M∪mS′
i
,X

end for
end for
s← initial state
Maintenance:
for t=1 to∞ do

a← choose action
s′ ← next state
for each mS′

i
,X ∈M do

concatenate fS′
i
(s′), fX(s,a), and fPar(S′

i
)(s,a) into training example x

update mS′
i
,X with x using (4), (5), and (6)

compute I(S′+i , X) using (7) and (8) (see text)
if I(S′+i , X) > η then
M←M−mS′

i
,X

S′+i ← S′+i ∪X (add X as parent of S′i)
for each Y /∈ S′+i do

extend mS′
i
,Y to model new dimension X (see text)

end for
end if

end for
s← s′

end for

At every time step, after updating the density models, we evaluate each candidate variableX for each
S′i by computing the three entropies H(S′+i ), H(X), and H(S′+i , X) using (8) and the appropriate
marginals obtained from the SOMN model for each X /∈ S′+i , and then calculating the resulting
information. For each S′i, the candidate variable Y with the highest information gain above a pre-
specified threshold η (if there is one) is added to the parents of S′i (and thus to S′+i ), and the SOMN
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modeling the joint distribution of S′+i and Y is removed from the set of SOMN models. Then,
each of the other candidate distributions for S′i is extended to incorporate Y by extending the mean
vectors and covariance matrices of each component in each model by one dimension. The values of
the parameters for the new dimension can be initialized in various ways. We describe the method
we used in our experiments in Section 5. Algorithm 1 shows the pseudo code for our approach.

The reader may wonder why one would not just maintain n SOMN models, each modeling the joint
distribution between a given S′i and all of its possible parent variables, and then simply evaluate
the information between its current set of parents and each other variable by using the appropriate
marginal distributions. The reason we do not do this is that as the dimensionality of the SOMN
models increases, the accuracy of the density estimate becomes more difficult to maintain with
relatively few mixture components. This is simply a consequence of the curse of dimensionality.
The idea behind maintaining a larger number of low-dimensional models is to keep the number of
mixture components necessary for an accurate estimate at a reasonable number. This is justified to
some degree by the assumption that the environment we are trying to model does in fact contain
structure in its dynamics, and that the number of parents of any given S′i will in general be much
smaller than the total number of state and action variables.

We would like to note, as we mentioned above, that our choice of the MOG model to represent the
factors of the transition function P results in a very simple method for obtaining the conditional
probability of a state s′ given the previous state s and action a. Note that for a multivariate Gaussian
random variable X = [X1 X2]T as defined in the example in Section 3, the conditional probability
of X1 given X2 is also a multivariate Gaussian with mean µ1|2 = µ1 + Σ12Σ−1

22 (X2 − µ2) and
covariance Σ1|2 = Σ11−Σ12Σ−1

22 Σ21, where µ and Σ and their components are also defined as they
were in the example in Section 3. Thus, since each S′i is modeled jointly with its parents in the DBN
by a MOG, one can obtain each component of s′ given s and a by conditioning on its parents in this
manner.

5 Experiments

We evaluated our approach on a structured environment which was actually multiple, independent
instantiations of a single MDP whose state and action spaces were conglomerated into a single
FMDP. The replicated MDP was a continuous “grid-world” with two state dimensions (horizontal
and vertical position) and two action dimensions (horizontal and vertical movement). The state
dimensions ranged from 0 to 1 and the action dimensions from −0.1 to 0.1, Each action dimension
changed the position of the agent in the appropriate dimension by its amount plus some mean-zero
Gaussian noise with 0.01 standard deviation. All action dimensions were executed concurrently and
so each action was vector-valued.

The state (action) vector for the full FMDP was constructed by concatenating the state (action)
vectors of each MDP into a single vector. We then also added three dimensions to the resulting
state vector that were independent of the dynamics of any of the component MDPs, and three action
dimensions that had no effect on any of the state dimensions of the full FMDP. The three added state
dimensions output at each time step, respectively, a random value in [0, 1], a constant value (0.5),
and a value (initialized to 0) that added Gaussian noise to it’s previous value (with a mean of 0.05
and a variance of 0.001) and that wrapped around to 0 when the value reached 1. These extra state
dimensions were just a few arbitrary ways of adding independent dimensions to the FMDP. The
values of all state and action dimensions for each of the MDPs were normalized to be in [0, 1] when
provided as training samples to the individual SOMN models.

In both experiments we initialized the SOMN models with 9 mixture components arranged in a
regular grid over [0, 1]2 and set the initial covariance matrices to 0.3I. When distributions were
extended by a dimension, we set the values of the mean-vectors for the new dimension to be evenly
spaced over [0, 1] and set the last row and column of the covariance matrix to be all zeros, but with
0.3 in the last position. We set the threshold η to 3.0 in both experiments. Figure 2 shows the number
of correct dependencies as a function of time step for the first environment, averaged over 30 runs.
The curve shows that our algorithm was able to discover the correct structure of this environment in
a reasonably short period of time. No incorrect dependencies were added by our algorithm at any
point.
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Figure 2: Results for the 3-MDP domain.

6 Discussion

We have presented a method for online, incremental learning of transition models of FMDPs with
continuous state and action spaces. We use incremental density estimation techniques to model
the factored transition function and information theoretic principles to add dependencies to a DBN
model of the FMDP. Our experimental results show that our approach is able to discover the correct
structure of a non-trivial, continuous, structured environment efficiently.

One limitation of our method is the use of the SOMN model, which requires a pre-specified number
of mixture components to model a given density. A possible remedy for this is the incorporation
of methods used in other SOM approaches which allow the number of units in the map to vary as
new data are received [13]. If successful, each mixture model need only use as many components as
necessary to obtain an accurate density estimate, potentially reducing computation time.

The complexity of our approach is quadratic in the number of state and action dimensions, which
will obviously pose a problem in very high-dimensional environments. It is possible, however, to
incorporate prior knowledge about an environment either in the form of pre-specified dependencies
or, less restrictively, constraints on the set of candidate variables considered. This could potentially
reduce the computational load significantly. Additionally, the calculation of mutual information
need not be done at every time step—only when one desires to evaluate candidate variables.

Our approach may be used in a feature selection setting for value function approximation in re-
inforcement learning, particularly in the case of learning abstract, temporally extended actions, or
options [14]. Although traditionally much of the work on options has assumed the same state rep-
resentation for each option in a given MDP, recent work has focused on the scenario in which each
option has its own state abstraction [2, 15]. The possibility of state abstraction not only reduces
the difficulty of learning a given option by reducing the number of variables over which the value
function must be supported, but also increases the efficiency with which an agent learns to use an
option by generalizing its value across states that differ along irrelevant dimensions.

The structural dependencies learned by our algorithm provide the subset of observation and action
dimensions relevant to manipulating a particular set of dimensions in the environment. If the objec-
tive of an option is to set such a set of dimensions to a value in a specific range, then our approach
provides an appropriate (reduced) subspace of the state-action space over which a value function
may be approximated. That subspace will likely be significantly smaller than the full state-action
space, greatly reducing the difficulty of learning that option.
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