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Abstract

The options framework provides a method for reinforcement learning agents to
build new high-level skills. However, since options are usually learned in the same
state space as the problem the agent is currently solving, they cannot be ported
to other similar tasks that have different state spaces. We introduce the notion of
learning options in agent-space, the portion of the agent’s sensation that is present
and retains the same semantics across successive problem instances, rather than
in problem-space. Agent-space options can be reused in later tasks that share the
same agent-space but are sufficiently distinct to require different problem-spaces.
We present experimental results that demonstrate the use of agent-space options in
building reusable skills.

1 Introduction

A great deal of recent research in reinforcement learning has focussed on hierarchical
methods (Barto & Mahadevan, 2003) and in particular the options framework (Sutton
et al., 1999), which is a principled way of learning and using macro-actions for hi-
erarchical learning and temporal abstraction in reinforcement learning. Unfortunately
most option learning methods learn useful macro-actions within the same state space as
the reinforcement learning problem the agent is solving at the time. Although this can
lead to faster learning on later tasks in the same space, learned options would be more
useful if they could be reused in later related but distinct tasks that may have different
state spaces.

We propose a method for learning portable options by learning over two sepa-
rate representations, as introduced in Konidaris and Barto (2005): a representation



in problem-space that is Markov for the particular task at hand, and one in agent-
space that may not be Markov but is retained across successive task instances (each
of which may require a new problem-space, possibly of a different size or dimen-
sion). Agents that learn options only in agent-space obtain options that can be reused
as macro-actions in future problem-spaces because the semantics of agent-space re-
main consistent across tasks.

We present the results of an experiment (using the Lightworld domain) that demon-
strates that agent-space option learning results in options that significantly improve
performance across a sequence of related but distinct tasks.

2 Background

2.1 The Options Framework
An option consists of the following three components (Sutton et al., 1999):

To: (s,a) +—[0,1]
I,: s — {0,1}
Bo: s — [0, 1]

where 7, determines the option policy (giving a probability distribution over each state-
action (s, a) pair that the option is defined in), I, is the initiation set, which is 1 for the
states where the option can be started from and 0 elsewhere, and 3, is the termination
condition, which gives the probability of the option terminating in each state. The
options framework (Sutton et al., 1999) provides methods for learning and planning
using options as actions into the standard reinforcement learning framework (Sutton &
Barto, 1998).

Methods for learning new options must include a method for determining when to
create an option or expand its initiation set, how to describe its termination condition,
and how to learn its option policy. Policy learning is usually performed by a standard
off-policy reinforcement learning method so that the agent can update all of the options
simultaneously when it takes an action (Sutton et al., 1998).

Creation and termination are usually performed by the identification of goal states,
so that an option is created to reach a particular goal state and terminates when it does
s0. The initiation set is then expanded to all of the states from which a goal state
is reachable. Previous research has selected goal states by frequency of visit and re-
ward gradient (Digney, 1998), frequency of visit on successful trajectories (McGovern
& Barto, 2001), relative novelty (Simsek & Barto, 2004), clustering algorithms and
value gradients (Mannor et al., 2004), local graph partitioning (Simsek et al., 2005)
and saliency (Barto et al., 2004; Singh et al., 2004). Other research has focussed on
extracting useful options by exploiting commonalities in collections of policies over a
single state space (Bernstein, 1999; Perkins & Precup, 1999; Pickett & Barto, 2002;
Thrun & Schwartz, 1995).

All of these methods have been used to learn options in the same state space in
which the agent is performing reinforcement learning, and thus can only be reused for
the same problem or for a new problem in the same space. Additionally, the available



state abstraction methods (Jonsson & Barto, 2001; Hengst, 2002; Jonsson & Barto,
2005) only allow for the automatic selection of a subset of this space for option learn-
ing. Ravindran and Barto (2002; 2003) employ an MDP minimisation framework to
obtain compact representations of options (which they term relativized options). Rel-
ativized options are difficult to obtain because they require significant computational
resources, and are only portable across tasks when the agent is able to determine an
appropriate transformation from the compact option to the current state space.

2.2 Sequences of Tasks and Agent-Space

In this paper we are concerned with an agent that is required to solve a sequence of
related but distinct tasks. The tasks are related in the sense that the same agent is re-
quired to solve a sequence of variations on the same type of task. We define a sequence
of related tasks as follows.

The agent experiences a sequence of environments generated by the same genera-
tive world model (e.g., they have the same physics, the same types of objects may be
present in the environments, etc.). From the sensations it receives in each environment,
the agent creates two representations. The first is a state descriptor that is sufficient to
distinguish Markov states in the environment. This induces a Markov Decision Pro-
cess (MDP) with a fixed set of actions (because the agent does not change) but a set of
states, transition probabilities and reward function that depend only on the environment
the agent is currently in. The agent thus works in a different state space with its own
transition probabilities and reward function for each task in the sequence. We call this
state space problem-space.

The agent also uses a second representation from the sensations that are consis-
tently present and retain the same semantics across tasks. This space is shared by the
sequence of problems, and we call it agent-space. These two representations stem
from two different representational requirements: problem-space models the Markov
description of a particular environment, and agent-space models the (potentially non-
Markov) commonalities across a set of environments. We thus term a sequence of
problems related if it consists of environments that share an agent-space.

This approach is distinct from that taken in prior reinforcement learning research
on finding useful macro-actions across sequences of tasks (Bernstein, 1999; Perkins
& Precup, 1999; Pickett & Barto, 2002; Thrun & Schwartz, 1995), where the tasks
must be in the same state space but may have different reward functions. An appro-
priate sequence of tasks under our definition requires only that the agent-space seman-
tics remain consistent, so each task may have its own completely distinct state space.
Konidaris and Barto (2005) have used the same distinction to learn shaping functions
in agent-space to speed up learning across a sequence of tasks.

One simple example of an appropriate sequence of tasks would be a sequence of
buildings where a robot equipped with a laser range finder is required to reach a partic-
ular location in the building. Since the laser-range finder readings are noisy and non-
Markov, the robot would likely build a metric map of the building as it explores in or-
der to localize, forming the problem space. The laser range finder readings themselves
form the agent space, because their meaning is consistent across all of the buildings.
The robot could eventually learn options in that space corresponding to macro-actions



like moving to the nearest door. Because these options are based solely on sensations in
agent space without referencing problem-space (any individual metric map), they can
be used to speed up learning and exploration in any building that the robot encounters
in the future.

3 Optionsin Agent-Space

We consider an agent solving n problems, each with its own state space, denoted
S1,..., Sn, and a single action space A. We view the ith state in task S; as consist-
ing of the following attributes:

sf =< &, >,

R R

where d{ is the problem-space state descriptor (sufficient to distinguish this state from
the others in S;, perhaps just 4), c{ is an agent-space sensation, and rf is the reward
obtained at the state. We are not concerned here with the form of d?, except to note
that it may contain or be disjoint from c. The goal of reinforcement learning in each
task S; is to find a policy 7; that maps each state to an action in A so as to maximise
return:

T d{ — a{ € A.
The agent also is either given or learns a set of higher-level options to reduce the

time required to solve the task. Options are usually defined in the same state-space as
the problem, so an option o would be defined as follows:

o (dz,a) — [0, 1]
I: & — {0,1}
By: d — [0, 1].

Options defined in this way are not portable between tasks because the form and
meaning of d (as a problem-space descriptor) may change from one task to another.
However, the form and meaning of ¢ (as an agent-space descriptor) does not. Therefore
we define agent-space option components as:

T (cl,a) —1[0,1]
I: ¢ — {0,1}
Bo: — [0, 1].
Although the agent is learning task and option policies in different spaces, because
it receives both an agent-space sensation and a problem-space descriptor at each state

both policies can be updated simultaneously.

4 Experiments
4.1 TheLightworld Domain

In the Lightworld domain, a robot is placed in an environment consisting of a sequence
of rooms, with each room containing a locked door, a lock, and possibly a key. In order



to leave a room, the robot must unlock the door and step through it. In order to unlock
the door, it must move up to the lock and press it, but if a key is present in the room, the
robot must be holding it to successfully unlock the door. To obtain the key, the robot
must move on top of it and pick it up. The robot receives a reward of 1000 for leaving
the door of the final room, and a step penalty of —1 for each action. The robot has
six actions: movement in each of the four grid directions, a pickup action and a press
action.

In addition, we equip the robot with twelve light sensors, grouped into threes on
each of its sides. The first sensor in each triplet detects red light, the second green
and the third blue. Each light sensor responds to light sources on its side of the robot,
ranging from a reading of 1 when the robot is on top of the light source, to a reading
of 0 when the light source is 20 squares away. Open doors emit a red light, keys on the
floor (but not those held by the robot) emit a green light, and locks emit a blue light.
An example lightworld is given in Figure 1.

Figure 1: A small example lightworld.

For every particular lightworld instance, a problem-space descriptor requires five
pieces of data: the current room number, the = and y coordinates of the robot in that
room, whether or not the robot has the key, and whether or not the door is open. We use
the light sensor readings as an agent-space because their semantics remain consistent
across lightworld instances. In this case the agent-space (with 12 continuous variables)
has higher dimension than any of the individual problem-spaces.



4.2 Typesof Agent

We use five types of agents in our experiments. The standard reinforcement learning
agent (without options) used Sarsa(\) (o = 0.1, v = 0.99, A = 0.9, ¢ = 0.01) with
each state assigned an initial value of 500.

The standard reinforcement learning agent (with options) used the same learning
strategy but added an (initially unlearned) option for each pre-specified salient event
(picking up each key, unlocking each lock, and walking through each door). Each
option was in the same state-space and used the same learning parameters as the ba-
sic reinforcement learning agent, but used off-policy trace-based tree-backup updates
(Precup et al., 2000) for intra-option learning. Each option got a reward of 1 when
it completed successfully and used a discount factor of 0.99 per action, and could be
taken only in the room in which it is defined, and in states where its value function
exceeds a minimum threshold (0.0001). Because these options are learned in problem-
space, they are useful but must be relearned each time because they cannot be ported
between lightworld instances.

The standard reinforcement learning agent (with perfect options) was given already
learned options for each salient event. It still performed option updates and was other-
wise identical to the standard agent with options, but it represents an agent using ideal
option transfer.

The reinforcement learning agents with agent-space options employed three op-
tions: one for picking up a key, one for going through an open door and one for un-
locking a door. These options were defined in agent-space, so each option’s value
function was a function of the twelve light sensors, rather than a problem-space de-
scriptor. Since these variables are continuous we used linear function approximation
for each option’s value function, performing updates using gradient descent (o = 0.01)
and off-policy trace-based tree-backup updates. The agent gave each option a reward
of 1 upon completion, and used a step penalty of 0.05 and a discount factor of 0.99.
An option could be taken at a particular state when its value function there exceeded a
minimum threshold (0.1). Because these options are learned in agent-space, they can
be ported between lightworld instances.

Finally, we tested reinforcement learning agents employing both agent-space and
problem-space options simultaneously. Since these agents (like the other agents using
options) learned using intra-option learning methods, they represent agents that learn
both portable and general, and non-portable but specific and exact skills simultane-
ously.

4.3 Experimental Structure

To evaluate the performance of the agent types, we generated 100 random lightworlds.
Each lightworld consisted of between 2 and 5 rooms, each having a width and height
of between 5 and 15 cells. The door and lock in each room were randomly distributed
around the room boundaries, and 3 of the rooms included a randomly placed key. This
results in state space sizes of between 600 and approximately 20, 000 state-action pairs,
with an average size of 4900 state-action pairs, slightly larger than the state space size
of the Taxi domain (Dietterich, 2000), a standard hierarchical reinforcement learning



test domain. We evaluated each problem-space option agent type on ten samples of
each world, resulting in a total of 1000 samples.

To evaluate the changing performance of the agent-space options as the agents
gained more experience, we again obtained ten samples for each world, resulting in
1000 total samples. For each test world, we ran the agents once without any training
and then with a varying number of training experiences. A training experience in a
given test world consisted of 100 episodes in an environment randomly selected from
the remaining 99 lightworlds. Although the agents were allowed to update their options
during evaluation in the test world, these updates were discarded after testing, so that
the agent-space options were never given prior training in the same world they were
being tested in.

44 Results

Figure 2 shows average learning curves for agents employing problem-space options,
and Figure 3 shows the same for agents employing agent-space options. They show
that the first time an agent-space option agent encounters a lightworld it performs in
approximately the same way as an agent without options (as evidenced by two topmost
learning curves in each figure), but its performance rapidly improves with experience in
other lightworlds. After experiencing a single training lightworld the agent has a much
shallower learning curve than an agent using problem-space options alone, until by 5
experiences its learning curve is similar to that of an agent with perfect problem-space
options (compare with the bottom-most learning curve of Figure 2), even though its
options are never trained in the same world in which it is tested. Thus the comparison
between Figures 2 and 3 clearly shows that agent-space options can be successfully
transferred between lightworld instances.

Figure 4 shows average learning curves for agents employing both types of op-
tions®. The first time such agents encounter a lightworld they perform as well as
agents using problem-space options (compare with the second highest curve in Fig-
ure 2), and thereafter rapidly improve their performance, doing better than agents us-
ing only agent-space options, and again by 5 experiences performing nearly as well
as agents with perfect options. We conjecture that this improvement results from two
factors. First, the agent-space in our example is a much larger space than any indi-
vidual problem-space, so problem-space options are much easier to learn from scratch
than agent-space options. This explains why agents using only agent-space options and
no training experiences perform more like agents without any options than like agents
with problem-space options. Second, options learned in our problem-space can repre-
sent exact solutions to specific subgoals, whereas options learned in our agent-space
must be approximated, and are likely to be general and therefore slightly less efficient
for any specific subgoal. This explains why an agent using both types of options per-
forms better in the long run than an agent using only agent-space options.

1We note that in eight of the more than 200, 000 episodes we used when testing agents with both types
of options the function approximator used to represent the agent-space value functions diverged, and we
restarted the episode. Although thisis aknown problem with the off-policy trace-based backup method we
used (Precup et a., 2000), it did not occur at al during the same number of samples obtained for agents
using agent-space options only.
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Figure 2: Learning curves averaged over 1000 lightworld instances for agents employ-
ing problem-space options.
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Figure 3: Learning curves averaged over 1000 lightworld instances for agents employ-
ing agent-space options, and having experienced varying numbers of training worlds.
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Figure 4: Learning curves averaged over 1000 lightworld instances for agents employ-
ing agent-space and problem-space options, having experienced varying numbers of
training worlds.

Figure 5 shows the mean total number of steps required over 70 episodes for agents
using no options, problem-space options, perfect options, agent-space options, and
both option types. Again it shows that experience in training environments rapidly
drops the number of total steps required, to nearly as low as the total number required
for an agent given perfect options. It also clearly shows that agents using both types of
options do consistently better than those using agent-space options alone. We note that
the error bars in Figure 5 are small and decrease with increasing experience, indicating
consistent transfer.

5 Discussion

In this paper we have introduced a framework for learning macro-actions in agent-
space, a different space from the one in which the agent is solving a problem. The
concept of an agent-centric representation is closely related to the notion of deictic or
ego-centric representations (Agre & Chapman, 1987), where objects are represented
from the point of view of the agent rather than in some global frame of reference. We
expect that for most problems, especially in robotics, agent-space representations will
be egocentric, except in manipulation tasks, where they will likely be object-centric.
In problems involving spatial maps, we expect that the difference between problem-
space and agent-space will be closely related to the difference between allocentric and
egocentric representations of space (Guazzelli et al., 1998).
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Figure 5: Total number of steps required for 70 episodes, averaged across 1000 light-
world instances, for reinforcement learning agents with no options (NO), learned
problem-space options (LO), perfect options (PO), agent-space options having expe-
rienced varying numbers of training worlds (0-10, dark bars), and both option types
having experienced varying numbers of training worlds (0-10, light bars).

We also expect that it will often be the case that the learning problem for an op-
tion in agent-space will actually be harder than solving an individual problem-space
instance, as was the case in our experiments. In such situations, learning both types of
options simultaneously is likely to improve performance. Since intra-option learning
methods allow for several options to learn from the same experiences, it may be better
in general to simultaneously learn both general portable skills and specific, exact but
non-portable skills, and allow them to bootstrap each other.

The introduction of agent-space descriptors into the reinforcement learning frame-
work creates a difficult design problem. Although this design problem is similar to that
of standard state space design, researchers in the reinforcement learning community
have so far developed significant expertise at designing problem-spaces, but not agent-
spaces. We expect that the two design problems are equivalently difficult, and that with
practice determining the relevant agent-spaces for related problems will become easier.

Finally, we note that although we have presented the notion of learning skills in
agent-space using the options framework, the same idea could easily be used in other
reinforcement learning frameworks, for example the MAXQ (Dietterich, 2000) or Hi-
erarchy of Abstract Machines (HAM) (Parr & Russell, 1997) formulations.
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6 Conclusion

In this paper we have introduced the notion of learning options in agent-space rather
than problem-space as a mechanism for building portable high-level skills in reinforce-
ment learning agents. Our experimental results show that such options can be success-
fully transferred between tasks that share an agent-space, and significantly improve
performance in later tasks, both by themselves and in conjunction with more specific
but non-portable problem-space options.
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