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Abstract. We present a robot motivational system design framework.
The framework represents the underlying (possibly conflicting) goals of
the robot as a set of drives, while ensuring comparable drive levels and
providing a mechanism for drive priority adaptation during the robot’s
lifetime. The resulting drive reward signals are compatible with existing
reinforcement learning methods for balancing multiple reward functions.
We illustrate the framework with an experiment that demonstrates some
of its benefits.

1 Introduction

Autonomy is central to intelligence—an intelligent system that requires the ex-
ternal specification of its goals is a tool, not an agent, because it fails the basic
test of agency. To be autonomous, an agent requires an internal motivational
system that appropriately values the actions available to it and generates its
goals. In natural agents this system is evolved, but in artificial agents we must
design it.

Reinforcement learning [17] is a learning, planning, and action selection
paradigm based on maximising reward. Although it does not deal with the prob-
lem of designing the motivational system that generates those rewards, it is an
intuitively appealing model of motivation-based learning. The importance of
motivation to intelligent robot design was recognised early [7, 3], and building
motivational systems based on reinforcement learning is still an area of active
research (e.g. [6]).

In this paper we attempt to bridge the gap between motivation and action
selection by outlining the properties that a motivational system should have, and
by introducing a design framework based on them. We illustrate our framework
with an experiment demonstrating its benefits.

2 Background

Reinforcement learning relies on the existence of a reward function that penalises
bad actions and reward good actions. If we are to use it as a method of action
selection for an autonomous robot, we require a reward generating mechanism



(or motivational system) that expresses the robot’s internal goals and motiva-
tions [3]. This mechanism will likely consist of multiple parts—real animals want
more than one thing, and autonomous robots are likely to have multiple (possibly
conflicting) simultaneously active concerns (at the very least, to keep running
and simultaneously complete whatever task it is that we designed them for).

This leads to the concept of a drive as the motivational unit underlying be-

havior, a module that expresses one of the robot’s purposes and produces moti-
vational force as a common currency [12] for use in action selection.

Two types of drive are present in the artificial intelligence literature. Systems
using homeostatic regulation [1] endow the agent with a set of internal physio-
logical variables, each with an optimal range. Actions that move a physiological
variable outside of this range are punished, and actions that move it toward this
range are rewarded. Systems using Hullian drives (e.g. [10, 11]) maintain a set of
drives, each with a drive level that varies between totally unsatisfied and fully
satiated. Reward is generated by drive level difference, so actions that raise the
level are rewarded and those that lower it are punished.

In this paper we use Hullian rather than homeostatic drives because not
all drives are homeostatic, and any homeostatic drive can be simulated using
a pair of Hullian drives (one to penalise going above the ideal range, and one
to penalise going below). This increases the number of drives, but also adds
flexibility because the two directions can be handled separately.

3 Desirable Properties

An ideal robot motivational framework would possess the following properties:

1. A drive interface specification that provides a well defined and consis-
tent way of specifying drives.

2. A reward generating mechanism that allocates drive-specific reward to
actions given their effect on the drive, rooting action selection in the agent’s
motivational state.

3. A drive priority mechanism so that the agent can adjust the relative ur-
gency of each of its drives during its lifetime.

4. Numerically comparable rewards and priorities, so that drive rewards
can be used as a common currency when comparing and balancing the de-
mands of various drives.

5. An efficient action selection mechanism that balances the demands and
priorities of multiple drives.

The split between reward and priority is not self evident, but we treat them
separately because such a split is adaptive. Drives and their associated reward
mechanisms will in most cases be fixed by design or evolution, and be grounded



in the agent’s “physiology”. Priority, however, should be a property of the en-
vironment the agent finds itself in, reflected in its own history. Agents in an
environment where water is scarce but food is not should be able to learn to
value water over food (and therefore have a higher water drive priority). These
aspects of the environment are difficult to predict at design time and may change
during the agent’s lifetime.

4 Overview

Figure 1 shows an overview of our motivational framework. The framework em-
ploys a collection of drives d1, ..., dn, where each drive di maintains a satiation
level σi and a priority level ρi. The priority level determines the shape of a pri-
ority curve, which translates satiation level to drive priority κi. For each time
step, the reward generated by the drive is obtained by multiplying the difference
in satiation between time steps by the drive priority, and the agent’s aim at any
given time is to maximize the sum of these rewards. A detailed description of
each of these elements is given the following sections.
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Fig. 1. An overview of our motivational framework. Each drive di maintains a satiation
level σi, and the reward signal it generates is the difference in σi from one point in
time to the next (shown in light gray) multiplied by a drive priority κi. Drive priority
is determined by translating σi using a priority curve, the shape of which is determined
by the drive’s priority parameter ρi. The agent aims to maximise r = Σiri for action
selection.



5 Representing Individual Drives

Each individual drive di consists of the following components:

1. A satiation level σi ∈ [0, 1], where at σi = 0 the drive is starved (and the
agent may cease functioning), and at σi = 1 the drive is satiated and should
have no effect on the agent’s behavior.

2. A drive process that updates σi according to the drive’s intended purpose.

3. A priority parameter ρi ∈ (0, 1), which reflects the agent’s long-term belief
about the difficulty of raising σi. A high value for ρi indicates that di is
difficult to satiate and should thus have a high priority, whereas a low value
indicates that it is easy to satiate and should thus have a low priority.

4. A priority process that monitors di’s satiation history and slowly increases
or decreases ρi to reflect the drive’s long-term priority.

The priority parameter ρi is used to affect the shape of a priority curve that
determines the drive’s priority κi given its current satiation level, according to
the following equation:

κi = 1 − σ
tan

ρiπ

2

i
.

Thus ρi allows the agent to adjust its drive priorities without changing the
underlying drive process. Figure 2 shows sample priority curves for a few values
of ρi. A very high value of ρi means that the drive attains a high priority even
when σi is near 1 (satiation), but a low value of ρi means that the drive reaches
a high priority only when it is near 0 (starvation). As we would expect, drive
priority is 1 at σi = 0 and 0 at σi = 1 irrespective of ρi, and at ρi = 0.5 the
priority curve is a straight line.
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Fig. 2. Satiation level modulated by sample priority parameters.



When the agent performs an action, it results in a change in σi for drive di,
and that change multiplied by the priority level for the drive results in drive
reward ri:

ri(t + 1) = κi(t)[σi(t + 1) − σi(t)].

This results in two design problems per drive: defining a drive process that
expresses the drive’s intended purpose and defining an appropriate priority pro-
cess. The first will differ for each drive, but will in most cases be grounded in
the robot’s physical state. The second will likely be based on the drive’s satia-
tion level history over a long period of time. Section 7 employs a simple priority
adjustment heuristic, but in cases with more drives we expect more complex,
drive specific rules will be required.

6 Combining Drives for Action Selection

We are faced with an action selection problem over a state space comprising
both the internal state of the robot and the external state of the environment.
More specifically, we are trying to find a policy π:

π : (sE , sI) 7→ a,

where sE is an external state descriptor, sI = (σ1, ..., σn) is an internal state
descriptor, and a is an action. We omit the priority parameters, ρ1, ..., ρn, from
sI because we can consider them constant as they are expected to change slowly
over the lifetime of the agent. This means that π is nonstationary, but it will
only change gradually.

Learning this policy directly may be difficult because the resulting state space
may be much larger than sE , the state space of the problem the robot is solving.
Furthermore, this space has significant redundant structure: only (sE , a) is useful
in predicting s′

E
(sE at the next timestep), and since drive satiation levels do

not interact, (sE , a, σi) uniquely determines σ′

i
and thus ri (and each satiation

level may only depend upon a subset of sE).
Unfortunately, it is easy to construct examples where varying just one drive

(e.g., by starving it) drastically changes the optimal policy for a given environ-
mental state. Therefore any individual drive’s value function or policy that is
not a function of both sE and all of sI must be an approximation.

There are two possible ways to exploit the structure of this state space. The
first is to attempt to learn π directly, using a function approximator specifically
designed to take advantage of this structure. Although learning would take place
over both sE and all of sI , if the function approximator is well designed then
the extra dimensions may not make the problem significantly harder.

Alternatively, if such a solution is not feasible, we can learn a value function
Qi for each drive simultaneously and independently (as a function of (sE , a, σi)
only), and combine them to form an overall value function Q. Several solutions
to this problem have been proposed in the literature. Of these, Sprague and Bal-
lard [16] show that using Sarsa (an on-policy reinforcement learning algorithm)



to learn each Qi and then setting Q(s, a) = ΣiQi(s, a) performs best. Using
an on-policy learning algorithm prevents each Qi from overestimation, since an
off-policy algorithm (like Q-learning) would compute each drive’s action values
assuming that their own optimal policies will be followed thereafter.

Using this method is equivalent to treating the values of the other drives as
hidden state, so the resulting state values for each drive will be the same as the
correct value state values for that drive at the expected value of each of the other
satiation levels.

7 Experiments

In this section we use Spier’s domain [14] to illustrate the benefits of the priority
aspects of our framework. An agent (of width 60 units) is placed in a 10, 000 ×

10, 000 toroidal grid containing two types of uniformly scattered resources (of
width 60 units). There are 14 of the first (dark) type of resource, but only 8 of the
second (lighter) type. The agent is able to perceive the proximity (scaled from 0
to 1) and angular distance (scaled from −1 to 1) of the nearest three of each type
of resource within a perceptual range of 1500 units, resulting in a sensor space
of twelve continuous variables. The agent can move forward ten units in the
direction it is facing or rotate in either direction by ten degrees, and has a high-
level behavior for approaching and consuming each visible target. Consumed
resources are randomly replaced. Figure 3 shows an example instance.

Fig. 3. An example domain instance. The large circle indicates the agent’s perceptual
radius, so it can see one of each resource type.



The agents were given two drives (one for each resource type), each using
a satiation level penalty of 0.00015 for a movement and a satiation level gain
of 0.1 for each successful consumptive act. Each drive’s priority parameter and
satiation value was initially set to 0.5. Learning was by Sarsa(0) and gradient
descent using a linear function approximator (α = 0.01, γ = 0.9) representing
separate value functions for each drive, each over the twelve continuous-valued
sensory attributes plus one continuous satiation level. Actions were chosen from
the available high-level approach and consume behaviors. We randomly gener-
ated 50 sample environments, and ran three types of agents for 250 episodes of 10
consumptive acts each. The first type of agent used drive reduction as a reward,
the second used our framework but with fixed priority parameters (ρ = 0.5), and
the third moved each drive’s ρ value after each episode toward the ratio of the
two drives’ number of successful consumptive acts (using α = 0.1).

The results are shown in Figure 4. The agent that does not take priority into
consideration (Figure 4a) first satiates (at about episode 100) the drive associ-
ated with the plentiful resource, and only then (when further consumptive acts
on this resource create less reward because it is near satiation) makes progress
bringing its second drive towards satiation, although by the end of 250 episodes
the second drive has not reached 80% satiation. The agent using priority curves
(Figure 4b) allocates a higher reward to the lower drive—because it is higher on
the priority curve by virtue of its low satiation value—and therefore increases
both drives simultaneously, with the second drive reaching well over 80% satia-
tion by 250 episodes. This occurs even though both drives have the same priority
parameters. Finally, the agent with flexible ρ values (Figure 4c) is able to better
balance the two satiation levels, even though they cannot be made to match be-
cause of differences in resource frequency. It also reaches well over 80% satiation
by 250 episodes.

Note that (as can be seen in Figure 4d) the final ρ values inversely reflect
the frequency of each resource, with the ρ value for the light (scarce) resource
converging to approximately double that of the dark (plentiful) one.

8 Related Work

The relevant work in motivational system design1 is primarily split into two
threads: research on motivational models based on drives and research on bal-
ancing multiple reward functions.

8.1 Motivational Models Based on Drives

Cañamero [4] introduced a motivational model using homeostatic drives where
each drive has an error signal (similar to a difference in satiation) which trans-
lated to an activation level (similar to a priority level), which could also be

1 We note that a great deal of research exists on computational models of natural
motivational systems. Since this paper is concerned with motivational system design
rather than modelling, we refer the interested reader to Savage’s review [13].
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Fig. 4. Average (over 50 trials) drive satiation levels for two drives given an uneven
distribution of resources. The first graph (a) shows satiation for an agent using drive
difference directly as reward. The second (b) shows satiation for an agent with fixed
priority parameters, and the third (c) shows the same for an agent that adjusts each
drive’s priority parameter to match observed resource frequency. The final figure (d)
shows the third agent’s priority parameters changing over time.

increased by an incentive stimulus (the presence of a goal object) or an activa-
tion modifier. The behavior attached to the drive with the highest activation is
selected for execution. This system did not use learning for action-selection, but



Cos Aguilera, Cañamero and Hayes [5] built a similar system using a simpler
model and reinforcement learning with dominant-drive action selection.

Blumberg [2] described a behavior-based architecture that uses internal Hul-
lian drives, where action selection uses the behavior with the highest activa-
tion (internal motivation multiplied by incentive stimulus). Reward generated
by drive difference is used to associatively learn the value of incentive stimuli
using reinforcement learning, but not for action selection.

Spier and MacFarland [15] empirically compared five different models of
decision-making in a two-resource domain using Hullian drives. This work did
not use reinforcement learning (although some of the decision models are simi-
lar), and the resources were available in equal quantities so the notion of drive
priorities was absent.

Finally, Konidaris and Hayes [10, 11] recently built a situated reinforcement
learning system based on Hullian drives similar to ours (but without a priority
mechanism), using a circadian switching mechanism for drive selection.

8.2 Balancing Multiple Reward Functions

To the best of our knowledge, Whitehead, Karlsson and Tenenberg [19] were
the earliest to recognise that a reinforcement learning robot might have multiple
goals expressed as separate reward functions and need to balance them. They
introduced the idea of reward functions that could be “switched off” and pro-
posed both setting Q to the highest individual Qi value and setting it to the sum
of the Qi values as modular action selection mechanisms. They pointed out that
these methods must respectively understimate and overestimate the monolithic
(true) value function, and that using the maximum Qi does not perform drive
balancing, while summing the Qi values may lead to actions where no drive re-
ceives a reward at all. However, their empirical results suggest that the difference
between either modular method and the monolithic method is small, and may
be more than made up for by the resulting increase in learning speed.

Sprague and Ballard [16] pointed out that these problems arise from using
off-policy methods, which compute each drive’s action values assuming that its
own optimal policies will be followed thereafter, and show improved performance
using Sarsa(0) (an on-policy learning algorithm). However, unlike Whitehead et
al. [19] they assume that each value function is always active, in which case their
method is not an approximation.

Humphrys [8] surveys several methods for balancing multiple reward func-
tions, placing them on a continuum from single-minded to cooperative, and in-
troduced W-learning, where agents explicitly learn a weight for each drive in
each state expressing the extent to which that drive would suffer if its preference
is not taken.

Although all of these papers are strongly related to this research, none of
them employed drive mechanisms. Thus they did not include satiation (beyond
on or off) or priority levels, and could not guarantee numerically comparable
rewards.



9 Discussion

9.1 The Multiplicity of Drives

Even the most intuitive drives may not be atomic upon closer inspection. For
example, sodium-depleted rats displays an enhanced appetite for food containing
sodium [18], which suggests that they have a separate sodium seeking drive and
possibly other nutrient seeking drives, instead of a single hunger drive. However,
a system approaching the complexity of an animal will need to maintain so many
internal variables that creating and balancing separate drives for each of them
is not likely to be feasible.

One way to get around this would be for each drive to represent many internal
variables likely to be systematically reduced by the same activity (e.g., nutrient
levels are all modified by eating). The drive process could then modify what
changes its satiation level according to the system’s current needs (e.g., fruit
becomes more rewarding when the agent needs sugar). We could even view each
agent-level drive as composed of several subdrives, so that a hunger drive is
composed of a salt drive, a sugar drive, etc., each with a very small state space.

9.2 Motivational Systems as a Basis for Further Learning

Once the motivational system described in this paper is present in an agent, it
could also be used a way of focusing other types of learning. For example, Cos
Aguilera, Cañamero and Hayes [5] learn object affordances based on changes
in motivational state, where the effect of a behavior is quantified in terms of
its effect on the agent’s drives. Another example is provided by Konidaris and
Hayes [10], where a robot learns associations between reward and the sensations
present at reward states to speed up reinforcement learning in novel environ-
ments. This results in guided (as opposed to blind) searches in new environments
[9], using a form of heuristic that can be learned autonomously. We expect that
robot control architectures based on a motivational system will provide further
opportunities for motivationally grounded learning.

9.3 Non-Physiological Drives

When designing a sufficiently complex autonomous robot, we may wish to in-
clude motivational aspects that do not involve “physiological” attributes. For
example, we may wish to motivate the robot to seek social interaction, or to
avoid verbal reprimand. Such motivations can be represented in our framework,
and thus integrated and balanced against physiological factors, although their
implementation may not be as natural as physiological drives. In such cases the
drive satiation level or priorities may be kept within a smaller range than usual
so that the robot’s “physiological” needs are never completely overridden for less
immediate motivations. Alternatively, constraining drive priorities to a particu-
lar ordering may be a useful way to build safety measures or sanity checks into
the robot.



10 Summary

We have presented a robot motivational system framework that provides a sim-
ple interface specification for drives, a mechanism for reward generation that
guarantees numerically comparable rewards, and a natural method for adjust-
ing drive priorities. The resulting reward structure is compatible with existing
reinforcement learning methods for balancing multiple drives.
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