
A CAUSAL APPROACH TO HIERARCHICAL

DECOMPOSITION IN REINFORCEMENT LEARNING

A Dissertation Presented

by

ANDERS JONSSON

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2006

Department of Computer Science

c© Copyright by Anders Jonsson 2006

All Rights Reserved

A CAUSAL APPROACH TO HIERARCHICAL

DECOMPOSITION IN REINFORCEMENT LEARNING

A Dissertation Presented

by

ANDERS JONSSON

Approved as to style and content by:

Andrew G. Barto, Chair

Sridhar Mahadevan, Member

Shlomo Zilberstein, Member

Neil E. Berthier, Member

W. Bruce Croft, Department Chair
Department of Computer Science

To my family.

ACKNOWLEDGEMENTS

In December 2002 I travelled to Vancouver, Canada, with my sister. When our

grandmother was a child, she and her family emigrated from Sweden to Canada

and settled near a small town called Hope in the vicinity of Vancouver. After the

depression struck in 1929, the financial prospects were poor, so the family decided to

return to Sweden. However, several of the Swedes who came with our grandmother

stayed in British Columbia, and in 2002, she still had friends in Vancouver. They

were very welcoming towards their former countrymen and invited me and my sister

to stay in their home. They treated us as if we were part of the family and gave us

extensive tours of the city and its surroundings.

During our second day in Vancouver, we drove to see the place where our grand-

mother had lived. After living for several years in the U.S., it felt special to experience

the only connection my family has ever had with North America. Our grandmother’s

friends grew up in Hope and were telling us stories about their childhood. As we were

driving through the small town, one of them pointed at a weirdly shaped tree. “That

tree is called the H-Tree, since the branches of two trees have grown together to form

the horizontal line of the H. We used to play there when we were children.”

Two years prior, I had worked on the H-Tree algorithm that is part of this disser-

tation. I am not a supersticious person, but something struck within me when I heard

about the H-Tree in the place where my grandmother lived as a child. The previous

year I had taken a sabbatical from my graduate studies and travelled to Chile to

lead hiking trips for young adults. During my sabbatical, I was evaluating my career

choices and putting into doubt whether I wanted to continue doing research. I believe

v

that this day in Hope, for the first time I felt certain that I had made the right choice

when coming to UMass to study for my Ph.D.

I would like to thank my parents for always being so supportive of me and for

always letting me make my own decisions. I would also like to thank my sister,

who I look up to and admire a lot. My wife, Rossana, has provided endless support

and encouragement when I have struggled to find motivation, and has restored my

harmony and confidence on more than one occasion when it was lacking.

The people in the Autonomous Learning Laboratory have also contributed in a big

way to my Ph.D. First and foremost, I would like to thank my advisor, Andrew Barto,

for being patient enough to have me as a graduate student. I would also like to thank

Sridhar Mahadevan for valuable help and support on several occasions. I have had

many fruitful discussions with Doina Precup, Ted Perkins, Balaraman Ravindran,

Michael Rosenstein, Mohammad Ghavamzadeh, Khashayar Rohanimanesh, Özgür

Şimşek, and Alicia “Pippin” Wolfe. The other people in the lab have contributed

to making it a fun and inspiring environment to work in: Sascha Engelbrecht, Matt

Schlesinger, Michael Kositsky, Amy McGovern, Ashvin Shah, Sarah Osentoski, Vic-

toria Manfredi, Andrew Stout, Colin Barringer, Jeff Johns, Chris Vigorito, George

Konidaris, and Kimberly Ferguson.

Finally, I have enjoyed the fortune of spending my time with many good friends

outside of research. My fellow players on the soccer field with whom I shared many

hours of sweat and toil. The people in the Vocal Jazz Ensemble who taught me so

much about music. The students in the Graduate Employee Organization who never

stop working for what they believe in. Finally, I feel especially grateful to my closest

friends who have made my stay in Amherst such a pleasant one, whether at barbecues

or during volleyball games or at the movies. I will always remember our time together

with a smile.

vi

ABSTRACT

A CAUSAL APPROACH TO HIERARCHICAL

DECOMPOSITION IN REINFORCEMENT LEARNING

FEBRUARY 2006

ANDERS JONSSON

M.Sc., ROYAL INSTITUTE OF TECHNOLOGY, STOCKHOLM

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

Reinforcement learning provides a means for autonomous agents to improve their

action selection strategies without the need for explicit training information provided

by an informed instructor. Theoretical and empirical results indicate that reinforce-

ment learning algorithms can efficiently determine optimal or approximately optimal

policies in tasks of limited size. However, as the size of a task grows, reinforcement

learning algorithms become less consistent and less efficient at determining a useful

policy. A key challenge in reinforcement learning is to develop methods that facilitate

scaling reinforcement learning algorithms up to larger, more realistic tasks.

We present a series of algorithms that take advantage of task structure to make

reinforcement learning more efficient in realistic tasks that display such structure.

In each algorithm, we assume that the state space of a task is factored, i.e., states

are collections of values of a set of state variables. Our work combines hierarchical

decomposition and state abstraction to reduce the size of a task prior to applying

vii

reinforcement learning. Hierarchical decomposition breaks a task into several subtasks

that can be solved separately. For hierarchical decomposition to simplify learning,

it is critical that each subtask is easier to solve than the overall task. To achieve

the goal of simplifying the subtasks, we perform state abstraction separately for each

subtask.

We begin by presenting an algorithm that uses experience from the environment

to dynamically perform state abstraction for each subtask in an existing hierarchy of

subtasks. Since our goal is to automate hierarchical decomposition as well as state

abstraction, a second algorithm uses a dynamic Bayesian network action represen-

tation to automatically decompose a task into a hierarchy of subtasks. In addition,

the algorithm provides an efficient way to perform state abstraction for each result-

ing subtask. A third algorithm constructs compact representations of activities that

represent solutions to the subtasks. These compact representations enable the use

of planning to efficiently approximate solutions to higher-level subtasks without in-

teracting with the environment. Our fourth and final algorithm provides a means to

learn a dynamic Bayesian network representation of actions from experience in tasks

for which the representation is not available prior to learning.

The dissertation provides a detailed description of each algorithm as well as some

theoretical results. We also present empirical results of each algorithm in a series

of experiments. In tasks that display certain types of structure, the simplifications

introduced by our algorithms significantly improve the performance of reinforcement

learning. The results indicate that our algorithms provide a promising approach to

make reinforcement learning better suited to solve realistic tasks in which these types

of structure are present.

viii

CONTENTS

Page

ACKNOWLEDGEMENTS . v

ABSTRACT . vii

LIST OF TABLES . xii

LIST OF FIGURES .xiii

CHAPTER

1. INTRODUCTION . 1

1.1 Summary of the dissertation . 3
1.2 Putting it together . 8

2. BACKGROUND . 10

2.1 Markov decision processes . 10
2.2 Reinforcement learning . 12
2.3 Activities . 13

2.3.1 Options . 13

2.4 Bayesian networks . 14
2.5 State abstraction . 15

2.5.1 Partitions . 15

2.6 DBN models of factored MDPs . 16

3. OPTION-SPECIFIC STATE ABSTRACTION . 18

3.1 The U-Tree algorithm . 19
3.2 H-Tree: Extending the U-Tree algorithm . 22

3.2.1 Hierarchical memory . 23

ix

3.2.2 Intra-option state abstraction . 23
3.2.3 Experimental results . 24

3.3 Discussion . 30
3.4 Related work . 31

4. A CAUSAL APPROACH TO HIERARCHICAL

DECOMPOSITION . 34

4.1 The VISA algorithm . 36

4.1.1 Causal graph . 36
4.1.2 Identifying exits . 38
4.1.3 Introducing options . 41
4.1.4 Initiation set . 42
4.1.5 Termination condition . 44
4.1.6 Policy . 44
4.1.7 State abstraction . 46
4.1.8 Task option . 51
4.1.9 Exit transformations . 52
4.1.10 Merging strongly connected components . 52
4.1.11 Summary of the algorithm . 53
4.1.12 Limitations of the algorithm . 54

4.2 Experimental results . 54
4.3 Discussion . 61
4.4 Related work . 62

5. CONSTRUCTING COMPACT OPTION MODELS 66

5.1 Multi-time option models . 67
5.2 Options in factored MDPs . 69
5.3 Partitions . 72
5.4 Finding useful partitions . 76

5.4.1 Tree operations . 76
5.4.2 Constructing partitions for exit options . 78
5.4.3 Distribution irrelevance . 82
5.4.4 Summary of the algorithm . 83

5.5 DBN model for options . 83
5.6 Experimental results . 85
5.7 Discussion . 86
5.8 Related work . 87

x

6. LEARNING DBN MODELS OF FACTORED MDPS 88

6.1 Learning the structure of Bayesian networks . 90
6.2 Learning a DBN model of factored MDPs . 91

6.2.1 Active learning . 94
6.2.2 Summary of the algorithm . 97

6.3 Results . 97
6.4 Discussion . 100
6.5 Related work . 101

7. CONCLUSION . 104

7.1 Future work . 107

APPENDIX: PROOF OF THEOREM 5.1.2 . 109

BIBLIOGRAPHY . 115

xi

LIST OF TABLES

Table Page

3.1 Parameters in our implementation of the U-Tree algorithm 30

4.1 Exits identified in the coffee task . 41

5.1 Complexity of computing a multi-time model for each exit option 84

xii

LIST OF FIGURES

Figure Page

1.1 The causal graph of the coffee task . 4

2.1 The DBN for action GO in the coffee task . 17

3.1 Illustration of the Taxi task . 24

3.2 Comparison between intra-option and regular state abstraction 27

3.3 Learned U-Trees for different policies . 28

3.4 Comparison between hierarchical learning, with and without state
abstraction, and flat learning . 29

4.1 The DBN for action GO in the coffee task . 37

4.2 The causal graph of the coffee task . 39

4.3 HEX-Q’s state variable ordering in the coffee task . 40

4.4 The transition graph (left) and reachability tree (right) of the
strongly connected component containing SU . 43

4.5 The hierarchy of options discovered by the VISA algorithm in the
coffee task . 51

4.6 Illustration of the AGV task . 56

4.7 Results of learning in the coffee task . 57

4.8 Results of learning in the Taxi task . 58

4.9 Results of learning in the Factory task . 59

xiii

4.10 Results of learning in the AGV task . 60

5.1 The tree T GO

W
and the restriction T GO

W
| (SR = R) . 77

5.2 The trees T GO

W
, TU, and the intersection T GO

W
∩ TU . 78

5.3 The policy of the exit option associated with the exit
〈(SL = L), BC〉 . 79

5.4 The tree T o
π ∩ TW and the result of MakeSSP(T o

π ∩ TW) 80

5.5 DBN for the option associated with 〈(SL = L), BC〉 84

5.6 Hierarchical vs. flat SPI in the Taxi task . 86

6.1 Intermediate configuration of the tree T GO

W
during learning 92

6.2 Results of learning DBNs in the coffee task . 98

6.3 Results of learning DBNs in the Taxi task . 99

6.4 Results of learning DBNs in the AGV task . 100

xiv

CHAPTER 1

INTRODUCTION

A central research topic in artificial intelligence is the development of algorithms

that solve sequential decision problems, which are problems that require repeated

decisions in dynamic environments to achieve one or several criteria. Instances of se-

quential decision problems appear in such diverse fields as industrial manufacturing,

search-and-rescue operations, Internet search, bioinformatics, electronic commerce,

space travel, board games, etc. Several factors contribute to making sequential de-

cision problems challenging. Reward may be delayed, which makes it difficult to

assess which decisions contribute to the desired outcome (i.e., the credit assignment

problem). The number of states is exponential in the number of variables describ-

ing a task, causing solution techniques to scale poorly to large tasks (i.e., the curse

of dimensionality). There are infinite ways to model a sequential decision problem

(i.e., the curse of modeling). The underlying state may be hidden and only partially

observable to the decision maker.

Reinforcement learning (Sutton and Barto, 1998) is a family of algorithms for

solving stochastic sequential decision problems, usually modeled as Markov decision

processes, or MDPs (Bellman, 1957). These algorithms use dynamic programming-

style updates to propagate reward through the state space or along trajectories.

Given enough time, reinforcement learning can solve the credit assignment problem

for MDPs, and several reinforcement learning algorithms are guaranteed to converge

to optimal solutions. However, because of the curse of dimensionality, these algo-

rithms become intractable as the number of variables describing a task grows. For

1

reinforcement learning to become more useful in practice and better suited to real-life

applications, it is necessary to scale reinforcement learning algorithms to increasingly

large tasks.

One approach to scaling reinforcement learning is through the use of function

approximation, which involves estimating an optimal solution of an MDP using a set

of parameters significantly smaller than the number of states. Reinforcement learning

combined with function approximation has had considerable success in tasks such as

backgammon (Tesauro, 1994), job-shop scheduling (Zhang and Dietterich, 1995), and

elevator dispatching (Crites and Barto, 1996). However, researchers have not been

able to repeat the success of reinforcement learning with function approximation in

other realistic tasks. It seems as if current techniques for function approximation do

not generalize well to arbitrary tasks.

Another approach to scaling reinforcement learning is to simplify tasks as much

as possible prior to learning. Since reinforcement learning algorithms have been em-

pirically and theoretically shown to work well in tasks with limited size, it makes

sense to reduce the size of a task before applying these learning algorithms. Realistic

tasks usually display several forms of structure that make it possible to simplify them.

Exploiting structure can bring the size of a task down to a reasonable level that gives

reinforcement learning algorithms a better chance of finding a good approximate so-

lution. In this dissertation, we will take this second approach to scaling reinforcement

learning.

We will focus on two types of simplification: hierarchical decomposition and state

abstraction. Hierarchical decomposition divides a task into a hierarchy of activi-

ties (also known as macro-actions or temporally-extended actions), which represent

stand-alone subtasks that can be solved independently. If each subtask is significantly

easier to solve than the overall task, hierarchical decomposition can cause an impor-

tant reduction in complexity. There exist three models of activities in reinforcement

2

learning: Hierarchical Abstract Machines, or HAMs (Parr and Russell, 1998), options

(Sutton et al., 1999), and MAXQ (Dietterich, 2000a). State abstraction ignores part

of the information inherent in the state description, effectively reducing the size of

the state space. Under certain conditions, state abstraction preserves optimality of

MDPs (Dean and Givan, 1997; Ravindran, 2004).

The motivation for this dissertation is to develop novel algorithms that simplify

sequential decision tasks prior to learning. The hope is that the simplification will

increase the probability of reinforcement learning algorithms to successfully approxi-

mate good solutions. We want our algorithms to be efficient, robust, and generalize

to a significant number of tasks. If possible, the algorithms should ameliorate the

curse of dimensionality and not rely on quantities proportional to the size of the state

space. We will focus on tasks that have factored state spaces, i.e., tasks whose states

are described by the values of a collection of state variables. We believe that most

realistic tasks fall within this category.

1.1 Summary of the dissertation

As a first step, we develop an algorithm, called the H-Tree algorithm, that per-

forms state abstraction from experience in an existing hierarchy of options (Sutton

et al., 1999), a special case of activities. Our algorithm is a modification of the U-Tree

algorithm (McCallum, 1995), which gathers data in the form of transition instances

and performs state abstraction in partially observable Markov decision processes, or

POMDPs (Åström, 1965). We modify McCallum’s definition of a transition instance

to include options, and perform state abstraction separately for each option. Results

indicate that option-specific state abstraction significantly accelerates learning in a

hierarchy of options. We also introduce the idea of intra-option state abstraction:

using experience from the execution of one option to perform state abstraction for

3

SL

SU

SR

SC

SW

SH

BC

GU

DC

GO

GO

DC

R

Figure 1.1. The causal graph of the coffee task

other options. Our experiments show that experience accumulates more quickly and

more accurately using intra-option state abstraction.

Our goal is to automate hierarchical decomposition as well as state abstraction.

We present the Variable Influence Structure Analysis, or VISA, algorithm, which

uses causal relationships between variables to perform hierarchical decomposition of

factored MDPs. The VISA algorithm is based on the assumption that the transi-

tion probabilities and expected reward of factored MDPs are modeled using dynamic

Bayesian networks, or DBNs (Dean and Kanazawa, 1989). The DBN model captures

conditional independencies between the state variables describing a factored MDP.

The VISA algorithm uses the DBNs to construct a causal graph which determines

causal relationships between state variables. VISA introduces options that cause the

values of state variables to change. At the top level, the algorithm introduces a task

option that corresponds to the original task. The causal relationships enable efficient

state abstraction for each option, effectively reducing the size of the original task. The

VISA algorithm is useful in tasks for which the values of key state variables change

relatively infrequently.

Figure 1.1 illustrates the causal graph of the coffee task (Boutilier et al., 1995),

which we will describe in detail in a later chapter. The causal graph has one node

for each state variable, plus one node corresponding to expected reward. Each edge

in the graph indicates that there are one or several causal relationships between two

4

state variables, conditional on actions that appear as labels on the edge. The VISA

algorithm uses the causal graph to perform state abstraction separately for each

option. An option that causes the value of a state variable Si to change only needs to

distinguish between values of state variables that have edges to Si in the causal graph.

This type of option-specific state abstraction significantly reduces the complexity of

computing an option policy. If the causal graph contains cycles, the VISA algorithm

gets rid of cycles by computing the strongly connected components of the graph.

The HEXQ algorithm (Hengst, 2002) determines causal relationships between

state variable by counting the frequency with which the values of state variables

change. HEXQ identifies exits, i.e., pairs of state variable values and actions that

cause the values of state variables to change. The VISA algorithm also identifies

exits, but unlike HEXQ, VISA uses the causal graph to determine causal relationships

between state variables. Since the causal graph captures causal relationships more

realistically than the frequency of change heuristic, VISA can decompose more general

tasks than can HEXQ. The VISA algorithm introduces one option for each exit, and

uses sophisticated techniques to determine the components of each option.

The VISA algorithm exploits sparse conditional dependence between state vari-

ables such that the causal graph contains two or more strongly connected components.

In addition, the algorithm is more efficient when changes in the values of state vari-

ables occur relatively infrequently. How likely is a realistic task to display this type

of structure? It is impossible for us to determine the percentage of tasks in which

the aforementioned structure is present. However, our intuition tells us that it is not

uncommon to encounter tasks that display this structure.

For example, consider any robot navigation task in which the robot has to pay

attention to objects. In many instances, the location of the robot is independent of

the state of these objects. However, the robot can affect the state of the objects if

it is in the correct location. In this case, the causal graph will contain one strongly

5

connected component containing the state variable describing location, and other

strongly connected components containing state variables describing the state of these

objects. As a consequence, it is possible for the VISA algorithm to decompose the

task. In Chapter 4, we performed experiments with the VISA algorithm in the Factory

task, which does not involve navigation, so the structure is not limited to navigation

tasks.

The DBN model of a factored MDP contains one DBN for each action, compactly

describing the transition probabilities and expected reward associated with the action.

Several researchers have developed efficient algorithms for solving factored MDPs

when a DBN model is available (Boutilier et al., 1995; Feng et al., 2003; Guestrin

et al., 2001; Jonsson and Barto, 2005; Kearns and Koller, 1999). If a similar compact

DBN model were available for each option, these algorithms could solve factored

MDPs decomposed into hierarchies of options. Existing techniques for constructing

option models require enumeration of the state space, which scales poorly to large

tasks. We develop an algorithm for constructing compact DBN models of options

that does not require enumeration of the state space. The DBN model enhances the

description of a learned option and makes it possible to learn and plan with options

using the more efficient algorithms that use DBN models to solve MDPs.

Our algorithm for constructing compact option models makes several contribu-

tions. First, we analyze the complexity of constructing a DBN model that makes it

possible to treat a learned option as a single unit during learning and planning. We

investigate how to reduce the complexity through the use of partitions with certain

properties. Finally, we show how to construct partitions with the required properties

for a particular class of tasks when a compact DBN model of primitive actions is

given. To construct partitions, we develop novel operations on decision trees. Results

indicate that our technique can significantly reduce the complexity of constructing

compact option models.

6

It is unrealistic to assume that a DBN model of a factored MDP is always available

prior to learning. We address the problem of learning DBN models from experience.

There exist algorithms in the literature for learning the structure of Bayesian net-

works (Buntine, 1991; Friedman et al., 1998; Heckerman et al., 1995). However, these

algorithms assume that a data set is given, whereas solution techniques for MDPs

typically have to gather data in the form of transitions and reward through interac-

tion with the environment. The complexity of learning DBNs heavily depends on the

time it takes to collect data. It is possible to accelerate data collection by selecting

high-quality data instances through a process called active learning. Researchers have

developed techniques for active learning of Bayesian networks (Murphy, 2001; Steck

and Jaakkola, 2002; Tong and Koller, 2001). These techniques perform experiments

by clamping a subset of the variables to fixed values and sampling over the remaining

variables.

We assume that it is only possible to sample MDPs along trajectories, not in

arbitrary states. The only way to gather information about transitions and reward is

by executing an action in the current state. Since it is not possible to simulate the

effect of actions in hypothetical states, we cannot perform experiments by clamping

a subset of the variables to fixed values. Consequently, we cannot apply existing

techniques for active learning. However, there is still an opportunity to perform

active learning of DBNs in factored MDPs. Because the DBN model of a factored

MDP consists of one DBN for each action, by selecting an action we effectively select

a DBN for which to collect data. It is thus possible to consider policies for action

selection whose utility lie in efficient data collection.

We develop an algorithm for learning DBNs that grows trees representing the con-

ditional probabilities of the DBNs. Our algorithm collects data instances by executing

actions and grows the trees as soon as a minimum number of data instances corre-

spond to each relevant value of each split variable. The algorithm uses the Bayesian

7

Information Criterion (BIC) (Schwartz, 1978) and the likelihood-equivalent Bayesian

Dirichlet metric (BDe) (Heckerman et al., 1995) to evaluate potential refinements.

We assume that no data is available to begin with and develop a technique for active

learning of DBNs to accelerate data collection. The time to collect data is minimized

if the distribution of data instances across values of each potential split variable is

perfectly uniform. We use the entropy of the distributions to measure uniformity and

select actions that maximize the total entropy of the distributions.

In each chapter, we illustrate the utility of one of our algorithms by conducting

a series of empirical experiments. Whenever possible, we compare our algorithm to

existing, state-of-the-art algorithms with similar application. We present the results

of the experiments in graphs that illustrate the convergence time and utility level

of each algorithm. In some cases, we also present theoretical results regarding the

complexity of our algorithms.

1.2 Putting it together

We present our algorithms in four separate chapters, but each algorithm could

be viewed as part of a larger system. Given a factored MDP, such a system would

perform the following steps:

1. Learn a DBN model of the factored MDP (Chapter 6)

2. Perform hierarchical decomposition using the DBN model (Chapter 4)

3. Perform state abstraction for each resulting option (Chapter 4)

4. Refine the state abstraction for each option (Chapter 3)

5. Construct a compact representation of each option (Chapter 5)

6. Learn the policy of each option, including task option (Chapter 4)

8

The reason that the chapters do not appear in order is that we present the algorithms

in chronological order of development. How efficient would this system be at solving

factored MDPs? Experimental results in Chapter 4 indicate that steps 2, 3, and 6

above can be implemented very efficiently in factored MDPs that display the structure

exploited by the VISA algorithm. Steps 4 and 5 can contribute to making step 6 more

efficient. Consequently, we believe that step 1 currently represents the main limitation

of this system. Our approach to learning DBN models of factored MDPs is only a

first step, and more work is needed in this area to make the system as a whole more

efficient.

9

CHAPTER 2

BACKGROUND

2.1 Markov decision processes

A Markov decision process, or MDP (Bellman, 1957), is a model of a stochastic

sequential decision problem. Formally, a finite MDP is a tuple M = 〈S,A, Ψ, P, R〉,

where S is a finite set of states, A is a finite set of actions, Ψ ⊆ S × A is a set

of admissible state-action pairs, P is a transition probability function, and R is an

expected reward function. Let As ≡ {a
′ ∈ A | (s, a′) ∈ Ψ} be the set of admissible

actions in state s ∈ S. Ψ is such that for each state s ∈ S, the set of admissible actions

As is non-empty, i.e., there is at least one admissible action. As a result of executing

action a ∈ As in state s ∈ S, the process transitions to state s′ ∈ S with probability

P (s′ | s, a) and provides the decision maker with an expected reward R(s, a). P is

such that for each admissible state-action pair (s, a) ∈ Ψ,
∑

s′∈S P (s′ | s, a) = 1.

The transition probability function P and expected reward function R constitute the

dynamics of MDPM.

A stochastic policy π selects action a ∈ As in state s ∈ S with probability π(s, a).

π is such that for each state s ∈ S,
∑

a∈As
π(s, a) = 1. In the discounted case, the

value function V π of policy π is the solution to the set of linear equations

V π(s) =
∑

a∈As

π(s, a)

[

R(s, a) + γ
∑

s′∈S

P (s′ | s, a)V π(s′)

]

, (2.1)

where γ ∈ (0, 1] is a discount factor. If we view V π as a vector, we can define an

operator T π and write the equations in (2.1) as V π = T πV π. The optimal value

10

function V ∗ is the solution to the Bellman optimality equation (Bellman, 1956):

V ∗(s) = max
a∈As

[

R(s, a) + γ
∑

s′∈S

P (s′ | s, a)V ∗(s′)

]

. (2.2)

Equivalently, we define an operator T ∗ to write the Bellman equation as V ∗ = T ∗V ∗.

An optimal policy π∗ is any policy whose value function is V ∗, i.e., in each state s ∈ S

it only assigns positive probabilities to actions in the set

A∗(s) = arg max
a∈As

[

R(s, a) + γ
∑

s′∈S

P (s′ | s, a)V ∗(s′)

]

. (2.3)

We define an operator A∗ such that π∗ = A∗V ∗ is an optimal policy.

If the dynamics of an MDP are known, it is possible to use dynamic programming

to compute an optimal policy. One such dynamic programming algorithm is value

iteration, which maintains an estimate V t of the optimal value function V ∗. The

algorithm successively adjusts its value estimate by performing the update V t+1 =

T ∗V t. The resulting policy is given by π = A∗V t. Policy iteration (Howard, 1960)

maintains a current policy πt and an estimate V πt

of the policy’s value function. The

algorithm alternates between value estimation and policy improvement. In the value

estimation step, the algorithm uses dynamic programming to compute the solution to

the equations V πt

= T πt

V πt

. Thereafter, the algorithm computes an improved policy

πt+1 = A∗V πt

. Both value iteration and policy iteration are guaranteed to converge

to an optimal policy (Puterman and Brumelle, 1979; Puterman, 1990).

A partially observable Markov decision process, or POMDP (Åström, 1965), mod-

els a stochastic sequential decision process in which the underlying state cannot be

directly observed. Formally, a finite POMDP is a tuple P = 〈S, Ω, φ, A, Φ, P, R〉,

where Ω is a finite set of observations, φ is an observation probability function, and

Φ ⊆ Ω×A is a set of admissible observation-action pairs. The current state s ∈ S of

a POMDP is unobservable. Instead, the decision maker makes an observation ω ∈ Ω

11

with probability φ(s, ω). φ is defined such that for each state s ∈ S,
∑

ω∈Ω φ(s, ω) = 1.

Let Aω ≡ {a
′ ∈ A | (ω, a′) ∈ Φ} be the set of admissible actions for observation ω ∈ Ω.

Φ is defined such that for each observation ω ∈ Ω, the set of admissible actions Aω is

non-empty, i.e., there is at least one admissible action for each observation.

2.2 Reinforcement learning

Reinforcement learning (Sutton and Barto, 1998) is a family of algorithms that aim

at computing an optimal or near-optimal policy of an MDP. Reinforcement learning is

especially useful when the dynamics of an MDP are unknown, in which case it is not

possible to apply dynamic programming to compute an optimal policy. There exist

several reinforcement learning algorithms that approximate an optimal policy through

interaction with the environment. Value-based reinforcement learning algorithms

maintain an estimate V of the optimal value function V ∗, or an estimate Q of the

optimal action-value function Q∗, defined as

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

P (s′ | s, a)V ∗(s′). (2.4)

The optimal policy is implicitly defined in each state as the action or actions which

result in the highest expected value. All reinforcement learning algorithms act in

the environment by executing actions according to some exploration scheme and

recording ensuing transitions and rewards. Following each transition, value-based

reinforcement learning algorithms adjust the local value estimate for the previous

state or state-action pair according to one of several update rules, possibly causing

the current policy to change. Examples of update rules include TD(λ) (Sutton, 1988),

Q-learning (Watkins, 1989), and SARSA (Sutton, 1996). If each state-action pair is

visited infinitely often, if value estimates are stored in a look-up table, and if the

step size parameter is appropriately reduced, reinforcement learning algorithms are

guaranteed to find an optimal policy (Sutton, 1988; Watkins and Dayan, 1992).

12

2.3 Activities

An activity (also known as a macro-action or a temporally-extended action) is a

closed-loop policy that takes multiple time steps to execute. Activities exploit recur-

rence by representing subroutines that are executed multiple times during successful

solution of a task. For example, if the task is to collect balls and put them into a bin,

the subroutine of putting a ball into the bin will be executed multiple times. If an

activity has been learned in one task, it can be reused in a second task which requires

execution of the same subroutine. Activities also enable more efficient exploration by

providing high-level behavior that looks ahead to the completion of the subroutines.

Finally, activities can accelerate learning if the subroutines are easier to learn than

the overall task. There exist three models of activities in reinforcement learning:

Hierarchical Abstract Machines, or HAMs (Parr and Russell, 1998), options (Sutton

et al., 1999), and MAXQ (Dietterich, 2000a).

A semi-Markov decision process, or SMDP (Puterman, 1994), is a model of stochas-

tic sequential decision problems in which actions can take variable amounts of time.

One way to form an SMDP is by adding activities to the action set of an MDP. The

policy of an SMDP selects between activities, which in turn select between actions,

resulting in a hierarchical representation of the task. Several reinforcement learning

algorithms have been extended to SMDPs (Bradtke and Duff, 1995; Sutton et al.,

1999; Dietterich, 2000a).

2.3.1 Options

An option (Sutton et al., 1999) is a model of an activity. Given an MDP M =

〈S,A, Ψ, P, R〉, an option is a tuple o = 〈I, π, β〉, where I ⊆ S is an initiation set, π

is a policy, and β is a termination function. Option o can be executed in any state

s ∈ I, repeatedly selects actions a ∈ A according to π, and terminates in state s′ ∈ S

with probability β(s′). An action a ∈ A can be viewed as an option with initiation

13

set I = {s ∈ S | (s, a) ∈ Ψ} whose policy always selects a and that terminates in all

states with probability 1.

Ravindran (2004) showed that an option o can be constructed by solving the

stand-alone task given by the option SMDPMo = 〈So, Oo, Ψo, Po, Ro〉, where So ⊆ S

is the subset of states for which option o is defined and Oo is a set of options. The set

of admissible state-option pairs Ψo ⊆ So × Oo is determined by the initiation sets of

options in Oo. The transition probability function Po is determined by the transition

probability function P of the underlying MDP and the policies and termination func-

tions of the options in Oo. The expected reward function Ro is independent of the

expected reward function R of the underlying MDP and can be selected to reflect the

desired behavior of option o. The policy π of option o can be defined as the optimal

policy of the option SMDPMo.

2.4 Bayesian networks

Let X be a set of discrete variables, and let x be an assignment of values to the

variables in X. Let fY, Y ⊆ X, be a projection such that if x is an assignment

to X, fY(x) is x’s assignment to Y. A Bayesian network (Pearl, 1988) is a tuple

B = 〈G, θ〉, where G is a directed acyclic graph with one node per variable Xi ∈ X,

and θ is a set of parameters defining the conditional probabilities of the variables.

The joint probability distribution of the variables is given by

P (x) =
∏

i

P (Xi = f{Xi}(x) | Pa(Xi) = fPa(Xi)(x)), (2.5)

where Pa(Xi) ⊆ X is the subset of variables with edges to Xi in G and the probabil-

ities P (Xi = f{Xi}(x) | Pa(Xi) = fPa(Xi)(x)) are defined by parameters in θ.

A dynamic Bayesian network, or DBN (Dean and Kanazawa, 1989), is a Bayesian

network that models the evolution of a set of variables in a temporal process. The

14

directed acyclic graph of a DBN has two layers of nodes: one layer representing the

current values of the variables, and one layer representing the next values of the

variables. The edges between layers are unidirectional and always point from the

current layer to the next layer. There can also be edges between nodes within a layer.

2.5 State abstraction

Each state of an MDP contains information about the current configuration of the

environment. Usually, not all information contained in a state is relevant to selecting

an optimal action. State abstraction is the process of ignoring part of the information

contained in a state in the hope of focusing on the information that is relevant to

selecting an optimal action. As a result of state abstraction, there are less distinct

situations to consider, simplifying learning of the MDP.

2.5.1 Partitions

A partition Λ of the set of states S of an MDP is a collection of disjoint subsets, or

blocks, λ ⊆ S such that
⋃

λ∈Λ λ = S. [s]Λ ∈ Λ denotes the block to which state s ∈ S

belongs. A function f : S → X from S to an arbitrary domain X induces a partition

Λf of S such that for each pair of states (si, sj) ∈ S2, [si]Λf
= [sj]Λf

if and only if

f(si) = f(sj). Let Λ1 and Λ2 be two partitions of S. Partition Λ1 refines Λ2, denoted

Λ1 ≤ Λ2, if and only if, for each pair of states (si, sj) ∈ S2, [si]Λ1
= [sj]Λ1

implies that

[si]Λ2
= [sj]Λ2

. The relation ≤ is a partial ordering on the set of partitions of S.

Dean and Givan (1997) and Ravindran (2004) defined two properties of partitions

with respect to an MDP M. A partition Λ has the stochastic substitution property

if, for each pair of states (si, sj) ∈ S2, each action a ∈ A and each block λ ∈ Λ,

[si]Λ = [sj]Λ implies that
∑

sk∈λ P (sk | si, a) =
∑

sk∈λ P (sk | sj, a). Λ is reward

respecting if for each pair of states (si, sj) ∈ S2 and each action a ∈ A, [si]Λ = [sj]Λ

implies that R(si, a) = R(sj, a). A partition Λ that has the stochastic substitution

15

property and is reward respecting partition induces a reduced MDP which has fewer

states and preserves optimality (Dean and Givan, 1997; Ravindran, 2004).

2.6 DBN models of factored MDPs

A factored MDP is described by a set of discrete state variables S. Each state

variable Si ∈ S takes on a value in the set V al(Si). The set of states S ⊆ ×iV al(Si)

is a subset of the Cartesian product of the value sets of all state variables. A state

s ∈ S assigns a value f{Si}(s) ∈ V al(Si) to each state variable Si ∈ S. We define a

context c as an assignment to a subset of the state variables C ⊆ S, i.e., a partial

assignment of values to the state variables.

We illustrate factored MDPs using the coffee task (Boutilier et al., 1995), in which

a robot has to deliver coffee to its user. The coffee task is described by six binary

state variables: SL, the robot’s location (office or coffee shop); SU, whether the robot

has an umbrella; SR, whether it is raining; SW, whether the robot is wet; SC, whether

the robot has coffee; and SH, whether the user has coffee. The robot has four actions:

GO, causing its location to change and the robot to get wet if it is raining and it does

not have an umbrella; BC (buy coffee) causing it to hold coffee if it is in the coffee

shop; GU (get umbrella) causing it to hold an umbrella if it is in the office; and DC

(deliver coffee) causing the user to hold coffee if the robot has coffee and is in the

office. All actions have a chance of failing. The robot gets a reward of 0.9 whenever

the user has coffee plus a reward of 0.1 whenever it is dry.

Boutilier et al. (1995) developed a compact model of factored MDPs that uses

DBNs to represent the effect of actions. The DBN model can be viewed as a proba-

bilistic version of the STRIPS action formulation (Fikes and Nilsson, 1971), which is

widely used in planning algorithms that solve deterministic sequential decision prob-

lems, since both describe the cause-effect relationships of actions. The DBN model

contains one DBN for each action a ∈ A of a factored MDP. Figure 2.1 illustrates the

16

[.8, .2][0, 1]

[1, 0]

[0, 1]

SU

SL

SR

SW

SC

SH

SW

SR

SU

SL

SU

SR

SW

SC

SH

R

U

W

R R

R

U

W

Figure 2.1. The DBN for action GO in the coffee task

DBN for action GO in the coffee task. There are two nodes for each state variable and

two nodes corresponding to expected reward. Nodes on the left represent the values

of variables prior to executing GO, and nodes on the right represent the values after

executing GO. The value of a state variable Si as a result of executing GO depends on

the values of state variables that have edges to Si in the DBN. A dashed line indicates

that a state variable is unaffected by GO.

Each state variable Si in the DBN for action a has an associated conditional

probability distribution, determining the resulting value of Si after executing a. We

assume that conditional probabilities are stored in trees. Figure 2.1 illustrates the

conditional probability tree associated with state variable SW and action GO. For

example, if the robot is dry (W), it is raining (R), and the robot does not have

an umbrella (U), the robot becomes wet with probability 0.8 as a result of exe-

cuting GO. We assume that there are no edges between state variables in a layer

of the DBN. In this case, the DBN model cannot represent arbitrary transition

probabilities. Instead, the transition probabilities are approximated according to

P (s′ | s, a) ≈
∏

Si∈S
Pi(Si = f{Si}(s

′) | Pa(Si) = fPa(Si)(s), a), where Pi is the condi-

tional probability distribution of state variable Si represented by the DBN for a.

17

CHAPTER 3

OPTION-SPECIFIC STATE ABSTRACTION

Research on activities has made it possible to exploit the hierarchical structure

of a task by representing recurring subroutines that are repeatedly executed during

solution of the task. An activity that has been learned in one task can be reused in

another task that requires execution of the same subroutine. Activities also enable

more efficient exploration of a novel task since they provide a learning agent with

larger chunks of behavior that enable the agent to look ahead multiple time steps and

perform search at a higher level. The ability to perform hierarchical decomposition

has enriched the reinforcement learning framework and increased the possibility of

exploiting task structure.

Most research on activities has focused on detecting recurring subroutines. Al-

though this is clearly an essential step in the process of hierarchical decomposition, it

is usually necessary to complement this process with state abstraction. If the stand-

alone task associated with an activity is equally difficult to solve as the overall task,

the complexity of solving the task is increased with each additional activity. To truly

benefit from hierarchical decomposition, the stand-alone task associated with each

activity should be easier to solve than the overall task. State abstraction can reduce

the complexity of solving the stand-alone tasks of activities by ignoring irrelevant

information.

Usually, different information is relevant for different activities. For example, if I

perform the task of walking to the door in a room, the locations of objects in the room

are relevant, but not the color of the door. On the other hand, if my task is to paint

18

the door, the color of the door is important, but not the location of objects in the

room (unless they obstruct the door). Which information it is safe to ignore depends

on the activity currently executing. To maximize the gain of state abstraction, we

should perform state abstraction separately for each activity.

In this chapter, we develop an algorithm that uses experience from interaction

with the environment to perform state abstraction separately for each option (Sutton

et al., 1999), a model of activities. We assume that there is an existing hierarchy

of options, and focus solely on the process of performing state abstraction. Our

algorithm is an extension of the U-Tree algorithm (McCallum, 1995), which performs

state abstraction in POMDPs by gathering transition instances through interaction

with the environment. We modify the definition of a transition instance to include

activities.

3.1 The U-Tree algorithm

The U-Tree algorithm (McCallum, 1995) forms a tree representation of a POMDP

P = 〈S, Ω, φ, A, Φ, P, R〉 from experience with the environment. The representation

makes it possible to perform state abstraction, simplifying the POMDP. The algo-

rithm assumes that the set of observations Ω is factored, i.e., that a set of observation

variables Ω describes the current observation. Each observation ω is an assignment

of values to the variables in Ω. The U-Tree algorithm executes actions in the environ-

ment according to an exploration scheme and records ensuing transition instances. A

transition instance is a tuple Tt =< Tt−1, at−1, rt, ωt >, where ωt is the observation at

time t, at−1 ∈ A is the previous action executed, rt is the reward received during the

transition to ωt, and Tt−1 is the previous transition instance. At the onset of learning,

i.e., at time t = 0, T0 is defined as an empty tuple.

The U-Tree algorithm maintains a tree, called the U-Tree, that sorts transition

instances based on their components. Since the true state is hidden, the U-Tree

19

algorithm considers distinctions over actions and observation variables during the

last H time steps, where H is a history index. In other words, the U-Tree induces a

partition of the set (A × Ω)H . A transition instance Tt recursively defines a history

ht = (at−H , ωt−H+1, . . . , at−1, ωt) ∈ (A × Ω)H of actions and observations during the

last H time steps. Based on its history ht, each transition instance Tt maps to a

unique leaf L(Tt) of the U-Tree, at which it is stored.

The U-Tree algorithm performs state abstraction in the original POMDP by treat-

ing each leaf l of the U-Tree as a single state of an MDP. For each leaf-action pair (l, a)

and each leaf l′, the algorithm maintains an estimate P̂ (l′ | l, a) of the probability of

transitioning from leaf l to leaf l′ as a result of executing a. For each leaf-action pair

(l, a), the algorithm also maintains an estimate R̂(l, a) of the expected reward as a

result of executing a in leaf l. The estimated transition probabilities P̂ and expected

reward R̂ can be computed from the transition instances at a leaf. Let T (l, a, l′) be

the set of all recorded transition instances from leaf l to leaf l′ via action a, i.e.,

T (l, a, l′) = {Tt | L(Tt−1) = l, at−1 = a, and L(Tt) = l′}. (3.1)

If no transition instances have been recorded as a result of executing action a in leaf

l, P̂ (l′ | l, a) and R̂(l, a) take on predefined values. Otherwise, P̂ (l′ | l, a) and R̂(l, a)

are computed as follows:

P̂ (l′ | l, a) =
|T (l, a, l′)|

|
⋃

l′′ T (l, a, l′′)|
, (3.2)

R̂(l, a) =

∑

l′

∑

Tt∈T (l,a,l′) rt

|
⋃

l′′ T (l, a, l′′)|
. (3.3)

The U-Tree algorithm performs reinforcement learning by maintaining an estimate

Q(l, a) of the optimal action-value of leaf-action pair (l, a). Following each time step,

all action-values are updated using a full sweep of value iteration:

20

Q(l, a) = R̂(l, a) + γ
∑

l′

P̂ (l′ | l, a)V (l′), (3.4)

where V (l′) = maxa′∈A Q(l′, a′) is the value of leaf l′.

The U-Tree algorithm starts out with a U-Tree containing a single root node. In

other words, the algorithm ignores differences between any two situations, treating

every situation the same. After every K steps, the algorithm performs a statistical

test to determine whether or not to refine the U-Tree. At each leaf l, the algorithm

considers as split variables each action or observation variable during the last H time

steps not already refined. For each split variable at leaf l, the algorithm makes a

temporary refinement. A refinement consists of introducing a fringe node lk, a child

of leaf l, for each value k of the split variable. The algorithm assumes a ranking on

the variables and refines the U-Tree in order of rank. Each instance Tt that maps to

l is distributed to the fringe nodes according to the value that Tt assigns to the split

variable, and P̂ and R̂ are recomputed. The algorithm performs value iteration to

estimate the action-value Q(lk, a) for each fringe node lk and action a ∈ A.

The algorithm uses the Kolmogorov-Smirnov statistical test to compare the dis-

tribution of expected future discounted reward at leaf l with the distribution at each

fringe node lk. The distribution of expected future discounted reward at leaf l depends

on the leaf’s policy action a∗, given by a∗ = arg maxa∈A Q(l, a). The distribution at

leaf l is composed of the expected future discounted reward Q(Tt) associated with

individual instances Tt consistent with leaf l and its policy action a∗. An instance Tt

is consistent with l and a∗ if L(Tt) = l and at = a∗, and Q(Tt) is given by

Q(Tt) = rt+1 + γ
∑

l′

P̂ (l′ | L(Tt), at)V (l′). (3.5)

If the distibutions differ with sufficiently small significance, the temporary refinement

is kept, and the fringe nodes lk become new leaves of the U-Tree. This process

continues until no more refinements are considered useful.

21

3.2 H-Tree: Extending the U-Tree algorithm

The H-Tree algorithm (Jonsson and Barto, 2001), where H-Tree is short for Hi-

erarchical U-Tree, is an extension of the U-Tree algorithm to partially observable

semi-Markov decision processes, or POSMDPs. POSMDPs are formed by adding ac-

tivities to the action set A of a POMDP. The H-Tree algorithm uses options (Sutton

et al., 1999) to model activities, so the action set A is replaced in the POSMDP by

an option set O. The algorithm uses experience from the environment to perform

option-specific state abstraction in an existing hierarchy of options.

We extended the U-Tree algorithm to POSMDPs by redefining the concept of a

transition instance to include activities. Since we are dealing with POSMDPs, each

option is associated with a stand-alone task given by the option POSMDP Po =

〈So, Ωo, φo, Oo, Φo, Po, Ro〉. According to our new definition, a transition instance

T o
ti

= 〈T o
ti−1

, oti−1
, kti , rti , ωti〉 is associated with an option o. Here, T o

ti−1
is the previous

transition instance associated with o, oti−1
∈ Oo is the option previously executed by

option o’s policy, kti = ti−ti−1 is the duration from the time option oti−1
was initiated

until it terminated, rti is the sum of discounted reward received during the execution

of oti−1
, and ωti ∈ Ω is the observation at time ti.

The H-Tree algorithm maintains one U-Tree for each option o ∈ O. In addi-

tion, each option o maintains its own set of transition instances. The U-Tree of

option o makes distinctions over the last H options and observations recorded dur-

ing execution of option o. In other words, the U-Tree of option o induces a par-

tition of the set (Oo, Ω)H . A transition instance T o
ti

recursively defines a history

hti = (oti−H
, ωti−H+1

, . . . , oti−1
, ωti) ∈ (Oo × Ω)H of the last H options and observa-

tions recorded during execution of o. Each transition instance T o
ti

of option o maps

to a unique leaf L(T o
ti
) of option o’s U-Tree according to its history hti .

The H-Tree algorithm grows the U-Trees in the same way as the U-Tree algo-

rithm. The U-Tree of each option initially contains just one node. After each K time

22

steps, the H-Tree algorithm stops to consider refinements of the U-Trees. The algo-

rithm uses SMDP Q-learning (Bradtke and Duff, 1995) to estimate the option-value

Q(l, o) of each leaf-option pair (l, o). Each refinement is evaluated by performing the

Kolmogorov-Smirnov test on the distributions of expected future discounted reward

at the leaf and fringe nodes. Refinements are kept if the distributions differ with suf-

ficiently small statistical significance. The result is a collection of trees that performs

state abstraction separately for each option.

3.2.1 Hierarchical memory

In addition to option-specific state abstraction, the H-Tree algorithm entails an-

other benefit, namely hierarchical memory. A common criticism of the U-Tree algo-

rithm is that it does not explain how to select the parameter H, the fixed history

index used as a basis for action selection. Sometimes the algorithm needs to remem-

ber a key decision, regardless of whether it was made 10 or 100 time steps ago. The

H-Tree algorithm does not provide a strategy for selecting H either. However, the

hierarchical organization of POSMDPs makes it easier to remember important deci-

sion points. With our definition, the transition instance immediately preceding the

current transition instance may have occured many time steps ago. We can safely as-

sume that executing a subroutine is a key decision. Our algorithm may only need one

or two transition instances to remember a key decision that occured many time steps

ago, so the algorithm will need to look at much fewer previous transition instances

when selecting an action. Memory is stored separately at each level in the hierarchy

of options in the form of transition instances; hence the term hierarchical memory.

3.2.2 Intra-option state abstraction

Recall that the policy π of an option o selects between a set Oo of options at a

lower level in the hierarchy. It is possible that the policies of several options share

the same set of lower-level options. Since the option policies share the same set of

23

y

1 2

4 3
x

Figure 3.1. Illustration of the Taxi task

options, a lower-level option selected during execution of one option could have been

selected during execution of any of the other options. Intra-option state abstraction

means that when a transition instance is recorded during the execution of an option

o, this instance is appended to all options whose policies select between the same set

Oo of lower-level options. These other options treat the transition instance as if it

had been recorded during their execution. This way, experience is accumulated faster

and refinements can be made earlier and with higher confidence.

3.2.3 Experimental results

We tested the H-Tree algorithm on the Taxi task (Dietterich, 2000a), in which an

agent – the taxi – moves around on a grid (Figure 3.1). The taxi is assigned the task of

delivering passengers from their location to their destination, both chosen at random

from the set of sites Q = {1, 2, 3, 4}. The taxi agent’s observation ω = (x, y, l, d) is

composed of the (x, y)-position of the taxi, the location l ∈ Q∪{taxi} of the current

passenger, and this passenger’s destination d ∈ Q. The actions available to the taxi

are Pick-up, Drop-off, and Move(m), m ∈ {N, E, S, W}, the four cardinal directions.

With probability 0.2, a move action takes the taxi in a random direction. When

a passenger is delivered, another passenger appears at a random site. The rewards

provided to the taxi are:

24

19 for delivering a passenger

−11 for illegal Pick-up or Drop-off

−1 for any other action (including moving into walls)

Navigating to individual sites are recurring subroutines that precede each pick-up

and delivery. For each site q ∈ Q, we introduced an option Navigate(q) = 〈Iq, πq, βq〉,

where, letting Ω denote the set of observations and Ωq = {ω ∈ Ω | (x, y) = (xq, yq)}

the set of observations such that the taxi is at site q,

Iq : Ω− Ωq

πq : the policy for reaching site q that the agent needs to learn

βq : 1 if ω is in Ωq; 0 otherwise.

We further introduced a local reward Rq for Navigate(q), identical to the global

reward provided to the agent with the exception that Rq = 9 for reaching site q.

In our application of the H-Tree algorithm to the taxi task, each option remem-

bered a maximum of 6,000 transition instances. If this length was exceeded, the oldest

instance in the history was discarded. Expanding the tree was only considered if there

were more than 3,000 instances. Since the H-Tree algorithm does not go back and

reconsider refinements of the tree, it is important to reduce the number of incorrect

refinements due to sparse statistical evidence. Therefore, our implementation only

compared two distributions of expected future discounted reward if each contained

more than 15 transition instances.

Because the taxi task is fully observable, we set the history index H of the H-

tree algorithm to one. For exploration, we used an ε-softmax strategy, which picks

a random action with probability ε and performs softmax exploration Sutton and

Barto (1998) otherwise. Normally, tuning the softmax temperature τ provides a

good balance between exploration and exploitation, but as the U-Trees evolve, a new

25

value of τ may improve performance. To avoid re-tuning τ , the ε-random part ensured

that all actions were executed regularly.

We designed one set of experiments to examine the efficiency of intra-option state

abstraction. We randomly selected one of the options Navigate(q) to execute, and

randomly selected a new position for the taxi whenever it reached q, ignoring the

issue of delivering a passenger. At the beginning of each learning run, we assigned a

U-Tree containing a single node to each option. In one set of runs, the algorithm used

intra-option state abstraction, and in another set, it used regular state abstraction in

which the U-Trees of different options did not share any transition instances.

In a second set of experiments, the policies of the options and the overall Taxi task

were learned in parallel. We allowed the policy of the overall task to choose between

the options Navigate(q) and the actions Pick-up and Drop-off. The reward pro-

vided for the overall task was the sum of global reward and local reward of the option

currently being executed (c.f. Digney, 1996). When a passenger was delivered, a new

taxi position was selected randomly and a new passenger appeared at a randomly

selected site.

The results from the experiments with intra-option state abstraction are shown

in Figure 3.2. The graphs for intra-option state abstraction (solid) and regular state

abstraction (dashed) are averaged over 5 independent runs. We tuned τ and ε for

each set of learning runs to give maximum performance. At intervals of 500 time

steps, the U-Trees of the options were saved and evaluated separately. The evaluation

consisted of fixing a target, repeatedly navigating to that target for 25,000 time steps,

randomly repositioning the taxi every time the target was reached, repeating for all

targets, and adding the rewards. From these results, we conclude that (1) intra-option

state abstraction converges faster than regular state abstraction, and (2) intra-option

state abstraction achieves a higher level of performance. Faster convergence is due to

the fact that the number of transition instances associated with the options increase

26

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

5

Time steps

U
−

T
re

e
ev

al
ua

tio
n

Intra−option
Regular

Figure 3.2. Comparison between intra-option and regular state abstraction

more quickly during intra-option state abstraction. Higher performance is achieved

because the amount of evidence is larger. The target of an option is only reached

once during each execution of the option, whereas it might be reached several times

during the execution of another option.

In the second set of experiments, we performed 10 learning runs, each with a

duration of 200,000 time steps. Figure 3.3 shows an example of the resulting U-Trees.

Nodes that represent distinctions are drawn as circles, and leaf nodes are shown as

squares or, in most cases, omitted. In the figure, a denotes a distinction over the

previously executed option (in the order Navigate(q), Pick-up and Drop-off), and

other letters denote a distinction over the corresponding observation. Note that the

U-Tree of Navigate(1) did not make a distinction between x-positions in the lower

part of the grid. In some places, for example in Navigate(4), the right branch of x,

the algorithm made a suboptimal distinction. A distinction over y would have given

27

Navigate(4)

l

a a a a a

yd d d d d

dd y y y y

x x x x x

x

a

dd

xx x

y y

x

yyy

yyOverall task Navigate(1)

Navigate(3)

Navigate(2)

Figure 3.3. Learned U-Trees for different policies

a smaller number of leaves and would have been sufficient to represent an optimal

policy. The U-Trees in the figure contain a total of 188 leaf nodes. Across 10 runs,

the number of leaf nodes varied from 154 to 259, with an average of 189. Some leaf

nodes were never visited, making the actual number of states even smaller. This

is comparable to the results of Dietterich (2000a) who hand-coded a representation

containing 106 states. Compared to the 500 distinct states of the Taxi task, or the

2,500 distinct states necessary to store the policies of the four navigation tasks and

the overall task without state abstraction, our result is a significant improvement.

Certainly, the memory required to store transition instances should also be taken

into account. However, we believe that the memory savings due to option-specific

state abstraction in larger tasks will significantly outweigh the memory requirement

for U-Trees.

To show the benefits of option-specific state abstraction, we ran another experi-

ment to compare the learning performance in the Taxi task of the U-Trees in Figure

3.3 with flat learning (i.e., without options) and hierarchical learning without state

abstraction. We used SMDP Q-learning (Bradtke and Duff, 1995), which reduces to

regular Q-learning in the flat case, to learn the policies of each option. We used an

28

0 0.5 1 1.5 2 2.5

x 10
6

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time steps

A
ve

ra
ge

 r
ew

ar
d

Options, abstraction
Flat
Options, no abstraction

Figure 3.4. Comparison between hierarchical learning, with and without state ab-
straction, and flat learning

ε-greedy exploration scheme with ε = 0.1, and decayed ε by 0.999 every 1,000 time

steps. In the case of hierarchical learning without state abstraction, we used the same

options as in the previous experiments. However, when there is no state abstraction,

SMDP Q-learning has to estimate an action-value for each state-action pair instead

of each leaf-action pair.

The results of the experiment appear in Figure 3.4. Each graph shows the average

reward over 100 trials, plotted over the number of time steps. Hierarchical learning

with option-specific state abstraction converges faster than the other approaches, tak-

ing into account that reward continues to increase slowly as ε is decayed. There are

two possible explanations for why the reward level is slightly higher in the case of flat

learning. The U-Trees in Figure 3.3 make several incorrect distinctions that may pre-

vent reinforcement learning from finding an optimal policy. Also, the ε-greedy action

selection impacts the reward more negatively in the case of hierarchical learning. Ex-

29

Table 3.1. Parameters in our implementation of the U-Tree algorithm

Parameter Function

H history index
K interval with which refinements are considered
L maximum length of history of transition instances
L0 minimum history length to consider refinements
z depth of fringe nodes
M minimum number of transition instances at fringe nodes
θ threshold for retaining a refinement
θ0 threshold when no refinement has been made
ε exploration factor
τ temperature of softmax action selection

ecuting the wrong option to completion results in a larger setback in terms of reward

than executing a random action for one time step. Note that hierarchical learning

without state abstraction performs considerably worse than flat learning. This ex-

periment illustrates our point that introducing activities only improves the learning

complexity if the stand-alone task associated with each activity is significantly easier

to solve than the overall task.

3.3 Discussion

We can think of several modifications that would help improve the U-Tree algo-

rithm. Our implementation of the U-Tree algorithm uses many parameters, illustrated

in Table 3.1. Each of these parameters has to be tuned for optimal performance. The

U-Tree algorithm would be much easier to use if there were fewer parameters. For

example, recall that our DBN learning algorithm evaluates refinements as soon as a

minimum number of data instances map to a leaf. If we used this type of criterion

in the U-Tree algorithm, we could replace the parameters K, L, L0, and M with a

single parameter.

30

Also, the U-Tree algorithm does not go back and reconsider refinements already

made in the tree. This is a significant drawback since additional evidence may suggest

that another refinement would result in a better representation. A future improve-

ment of the U-Tree algorithm would be to include a mechanism that goes back in

the tree and reconsiders refinements. Another potential extension of the U-Tree al-

gorithm is to consider another type of refinement that detects symmetry among the

values of a state variable. This could result in an even more compact representation,

along the lines of the work by Ravindran (2004).

3.4 Related work

The idea of state abstraction in MDPs dates back to Smith (1971), who used a

partitioned state space to store test quantities similar to values. Dean and Givan

(1997) used stochastic bisimulation homogeneity as a framework to analyze state

abstraction in MDPs. Their analysis permits the notion of a minimal MDP which

is constructed by finding the coarsest homogeneous refinement of the state space of

the originial MDP. Ravindran (2004) recently formulated an algebraic approach to

abstraction in MDPs based on homomorphisms, an old concept from automata theory.

He introduced the definition of a homomorphic image of an MDP, and showed that a

homomorphic image preserves optimality. The homomorphic image of an MDP forms

a partition of the set of state-action pairs of the MDP, which enables more general

abstraction than the minimal MDP of Dean and Givan (1997).

Several researchers have developed algorithms that perform state abstraction from

experience with the environment. Model minimization (Dean and Givan, 1997) suc-

cessively refines an initial partition of the state space of an MDP until each block of

the partition satisfies stochastic bisimulation homogeneity, approximating the mini-

mal MDP. Ravindran (2004) extended model minimization to partitions of the set of

31

state-action pairs of an MDP. The resulting algorithm finds an approximation of the

minimal homomorphic image of an MDP.

Other algorithms take a similar approach: they start with a coarse representation

of the state space of an MDP and successively refine the representation to find an

approximately minimal MDP. The G-learning algorithm (Chapman and Kaelbling,

1991) constructs a tree-based partition of the state space of an MDP starting with a

single root node. The algorithm refines the tree when the value estimate of leaf nodes

differ with sufficiently small significance. Boutilier and Dearden (1994) developed

an algorithm that refines a partition based on immediately relevant discriminants.

Discriminants with the greatest impact on value are deemed most relevant, but the

algorithm also considers other criteria. The Parti-game algorithm (Moore and Atke-

son, 1995) and variable resolution discretization (Munos and Moore, 1999) construct

discrete partitions of continuous state spaces. The Parti-game algorithm refines the

partition when it fails to accurately predict transition probabilities. Variable reso-

lution discretization uses two global measures, influence and variance, to refine the

partition. The U-Tree algorithm (McCallum, 1995), which the H-Tree algorithm ex-

tends, also falls within this category of algorithms, although it is applicable in more

general tasks modeled as POMDPs.

Dietterich (2000b) was the first to formalize the idea of performing state abstrac-

tion separately for each activity. He outlines several conditions under which it is safe

to perform state abstraction in a hierarchy of activities. Some of these conditions

coincide with the definition of a homomorphic image (Ravindran, 2004). Andre and

Russell (2002) defined safe state abstraction for Programmable Hierarchical Abstract

Machines, an extension of the HAM model of activities. These approaches requires

the system designer to handcraft state abstraction, whereas the H-Tree algorithm

performs state abstraction from experience. Ravindran and Barto (2003) later intro-

duced the idea of relativized options, which are defined without an absolute frame

32

of reference. The authors extended the model minimization technique to the SMDP

framework to perform state abstraction separately for each option.

At the time of the H-Tree algorithm, hierarchical memory was simultaneously

suggested by Hernandez-Gardiol and Mahadevan (2001). The authors developed an

algorithm called Hierarchical Suffix Memory that combines memory with activities to

propagate delayed reward across long decision sequences. Their algorithm uses Near-

est Sequence Memory and Utile Suffix Memory (McCallum, 1995) to handle memory,

represents activities using Hierarchical Abstract Machines (Parr and Russell, 1998),

and uses SMDP Q-learning (Bradtke and Duff, 1995) to learn policies of activities.

Hierarchical Suffix Memory uses experience to add memory to the state description

of the stand-alone task associated with each activity. This makes it possible to per-

form state abstraction separately for each activity, just like the H-Tree algorithm.

However, Nearest Sequence Memory and Utile Suffix Memory do not allow factored

representations, so Hierarchical Suffix Memory is more likely to suffer from the curse

of dimensionality in factored POMDPs.

Intra-option state abstraction is analogous to intra-option learning (Sutton et al.,

1998). During intra-option learning, reinforcement learning updates occur as normal

for the current option following execution of an action or option. If the same action

or option would have had a non-zero probability of being selected by the policies of

other options, reinforcement learning updates occur for those other options as well.

Since experience accumulates faster, intra-option learning can significantly speed up

the convergence time of learning.

33

CHAPTER 4

A CAUSAL APPROACH TO HIERARCHICAL

DECOMPOSITION

One of the fundamental benefits of hierarchical decomposition is the ability to

simplify the learning of a task by breaking it into suitable subtasks. However, indis-

criminately introducing subtasks that are as difficult to solve as the overall task can

significantly increase the complexity of learning. In the previous chapter we argued

that to take full advantage of hierarchical decomposition, it is necessary to perform

state abstraction separately for each activity. Our work used the option model of ac-

tivity, and we showed how option-specific state abstraction in a hierarchy of options

can reduce, instead of increase, the complexity of learning a task.

Our previous research on option-specific state abstraction assumes that a hierar-

chy of options is already given at the onset of learning. In other words, it ignores the

problem of identifying suitable subtasks and relies on the system designer to decom-

pose the task. However, it may not always be apparent to a system designer how to

correctly identify appropriate subtasks prior to learning. Experience from interaction

with the environment may provide additional hints about promising candidates for

activities. We argue that an autonomous agent should be able to perform hierarchical

decomposition on its own using experience from the environment.

In this chapter, we present Variable Influence Structure Analysis, or VISA, an

algorithm that uses analysis of causal relationships between state variables to perform

hierarchical decomposition of factored MDPs. The VISA algorithm uses the DBN

model of factored MDPs to compactly represent transition probabilities and expected

34

reward. However, the VISA algorithm makes additional use of the DBN model. In

addition to describing the effect of actions, the DBN model implicitly expresses a

notion of causality between state variables, conditional on the actions. A specific

value of one state variable can cause the value of another state variable to change if

the right action is executed. The VISA algorithm uses information about this type

of causal relationship to identify subtasks that change the values of state variables,

and introduces an option for each subtask.

Even though the VISA algorithm identifies subtasks that enable hierarchical de-

composition of factored MDPs, the true strength of the algorithm lies in its ability

to perform option-specific state abstraction. The VISA algorithm constructs a causal

graph that illustrates how the state variables of a factored MDP influence each other.

Recall that each option is associated with an option SMDP that implicitly defines the

option policy. Because of the causal relationships between state variables, the option

SMDP of an option that causes the value of a particular state variable to change

only needs to discriminate between state variables that influence that particular state

variable. In addition, the option SMDP only needs to contain actions or options that

cause the values of those influencing state variables to change. The resulting abstrac-

tion enables an important reduction in the complexity of learning the policies of the

options identified by VISA.

Throughout this chapter, we assume that a DBN model of factored MDPs is

provided prior to learning. Although this is an optimistic assumption, several other

researchers have developed efficient algorithms for solving factored MDPs that also

assume that a DBN model is given. It is not entirely unrealistic to assume that an

autonomous agent is aware of the causes and effects associated with its actions prior

to learning. Nevertheless, in Chapter 6 we relax the assumption and address the

problem of learning a DBN model from experience with the environment.

35

4.1 The VISA algorithm

An autonomous agent can often anticipate how the variables describing the state

of its environment are related as a result of executing actions. For example, a soccer-

playing agent that is next to the ball and makes a motion to kick can influence

the location of the ball. The variable describing the location of the ball and the

variable describing the location of the agent are related as a result of kicking. The

relationship between state variables can usually be described in terms of causes and

effects. Kicking, while next to the ball, causes the location of the ball to change.

There is a causal relationship between the variable describing the location of the

agent and the variable describing the location of the ball, conditional on the action of

kicking. In addition, variables are often conditionally independent. A soccer player’s

location on the field is independent of many variables, such as the dimensions of the

field, the length of the grass, and the weather, regardless of which action is executed.

Since actions only sometimes cause the values of variables to change, it is useful

to introduce activities that satisfy the conditions necessary for change. In the soccer

example, a useful activity would be to take the agent next to the ball before kicking.

The VISA algorithm searches for variable values and actions that cause the value of a

state variable to change, and introduces an option for each such variable value change.

The causal relationships between state variables and the conditional independence

implicit in the lack of causal relationships offer ample opportunity to perform option-

specific state abstraction, resulting in an important reduction in learning complexity.

The details of the algorithm are described in the following sections.

4.1.1 Causal graph

The first step of the VISA algorithm is to construct a causal graph representing

the causal relationships between state variables. The causal graph contains one node

per state variable plus one node corresponding to expected reward. There is a directed

36

[.8, .2][0, 1]

[1, 0]

[0, 1]

SU

SL

SR

SW

SC

SH

SW

SR

SU

SL

SU

SR

SW

SC

SH

R

U

W

R R

R

U

W

Figure 4.1. The DBN for action GO in the coffee task

edge between two state variables Sj and Si if and only if there exists an action a ∈ A

such that there is an edge between Sj and Si in the DBN for a. In other words, each

edge in the causal graph represents a causal relationship between two state variables

conditional on one or several actions. The algorithm labels each edge in the causal

graph with the actions that give rise to the causal relationship.

We will use the coffee task (Boutilier et al., 1995) to illustrate the VISA algorithm.

The coffee task is described by six binary state variables: SL, the robot’s location

(office or coffee shop); SU, whether the robot has an umbrella; SR, whether it is

raining; SW, whether the robot is wet; SC, whether the robot has coffee; and SH,

whether the user has coffee. The robot has four actions: GO, causing its location to

change and the robot to get wet if it is raining and it does not have an umbrella;

BC (buy coffee) causing it to hold coffee if it is in the coffee shop; GU (get umbrella)

causing it to hold an umbrella if it is in the office; and DC (deliver coffee) causing

the user to hold coffee if the robot has coffee and is in the office. All actions have a

chance of failing. The robot gets a reward of 0.9 whenever the user has coffee plus a

reward of 0.1 whenever it is dry.

37

Figure 4.1 shows the DBN for action GO in the coffee task. There are several

interesting things to note. For each state variable Si, there is an edge from the node

representing the value of Si prior to executing GO to the node representing the value

of Si after executing GO. In other words, each node in the causal graph should have

an associated reflexive edge. However, we are not interested in the causal relationship

of a state variable onto itself, so we remove reflexive edges in the causal graph. Also,

there are edges from state variable SU to state variable SW in the DBN, as well as from

SR to SW. Consequently, there should be an edge from SU to SW in the causal graph

labeled GO, as well as an edge from SR to SW labeled GO.

The causal graph of the coffee task is illustrated in Figure 4.2. Note that the

edges from the DBN for action GO have been incorporated into the causal graph, as

well as edges from the DBNs of the other actions. Also note that there are no cycles

in the causal graph. However, this is not true in general for arbitrary tasks, since it is

possible for state variables to mutually influence each other. The VISA algorithm gets

rid of cycles in the causal graph by computing the strongly connected components

of the causal graph. Each strongly connected component consists of one or several

state variables that are pairwise connected through directed paths. It is possible to

construct a component graph in which each node is a strongly connected component,

and which has an edge between two nodes if and only if there is an edge in the causal

graph between a state variable of the first component and a state variable of the

second component. The component graph is guaranteed to contain no cycles. In

the coffee task, each state variable in the causal graph is its own strongly connected

component, so the component graph is identical to the causal graph.

4.1.2 Identifying exits

The VISA algorithm builds on ideas from the HEX-Q algorithm (Hengst, 2002),

an algorithm that also performs hierarchical decomposition of factored MDPs from

38

SL

SU

SR

SC

SW

SH

BC

GU

DC

GO

GO

DC

R

Figure 4.2. The causal graph of the coffee task

experience with the environment. The HEX-Q algorithm first determines an ordering

on the state variables by randomly executing actions and counting the frequency with

which the value of each state variable changes. The state variable whose value changes

the most frequently becomes the lowest variable in the ordering, and so on. For each

state variable Si in the ordering, the HEX-Q algorithm identifies exits 〈k, a〉, pairs

of a state variable value k ∈ V al(Si) and an action a ∈ A, that cause the value of

the next state variable in the ordering to change. The HEX-Q algorithm introduces

an option for each exit state, and the options on one level of the hierarchy become

actions on the next level.

Even though the HEX-Q algorithm achieved some early success, the frequency of

change heuristic may not be an accurate indicator of how state variables influence

each other. In addition, the ordering does not capture the fact that the value of a

state variable may depend on multiple other state variables. Figure 4.3 illustrates

the state variable ordering that the HEX-Q algorithm comes up with in the coffee

task. There are several differences between this ordering and the SVIG. The ordering

wrongly concludes that state variable SW influences SR, when it is really the other way

around. The ordering also fails to capture the fact that the value of SH depends on

both SL and SC.

The VISA algorithm also searches for exits that cause the values of state variables

to change. However, instead of the frequency of change heuristic, the VISA algorithm

39

SL SC SH SU SW SR R

Figure 4.3. HEX-Q’s state variable ordering in the coffee task

uses the causal graph to determine how state variables influence each other. Since

the causal graph more realistically describes the causal relationships between state

variables, the VISA algorithm is able to successfully decompose more general tasks

than the HEX-Q algorithm. Also, since the value of a state variable may depend on

several other state variables, an exit 〈c, a〉 in the VISA algorithm is composed of a

context c and an action a ∈ A. Recall that a context c is an assignment of values to

a subset C ⊆ S of the state variables.

The VISA algorithm searches for exits in the conditional probability trees of the

DBN model. Consider, for example, the conditional probability tree associated with

state variable SW and action GO in Figure 4.1. The left-most leaf of the tree is associ-

ated with states that assign the value W to state variable SW. As a result of executing

action GO in such states, the value of SW becomes W with probability 1. In other

words, if the robot is wet prior to executing GO, it will always remain wet, so the

value of SW does not change. The right-most leaf of the tree is associated with states

that assign W to SW and R to SR. As a result of executing action GO in such states,

the value of SW becomes W with probability 1. In other words, if the robot is dry

prior to executing GO and it is not raining, it will always remain dry, so again the

value of SW does not change. The VISA algorithm does not generate exits for either

of these two leaves.

Now consider the leaf associated with states that assign W to SW, R to SR, and

U to SU. As a result of executing action GO in such states, the value of SW becomes

W with probability 0.8 and W with probability 0.2. Since the value of state variable

SW changes from W to W with non-zero probability, the VISA algorithm generates

40

Table 4.1. Exits identified in the coffee task

Exit Variable Change

〈(), GO〉 SL L→ L, L→ L
〈(SL = L), BC〉 SC C → C
〈(SL = L), DC〉 SC C → C
〈(SL = L, SC = C), DC〉 SH H → H
〈(SL = L), GU〉 SU U → U
〈(SU = U, SR = R), GO〉 SW W → W

an exit 〈(SU = U, SR = R), GO〉 that causes the value of SW to change. Note that the

value of SW does not appear in the exit since that is the state variable whose value we

are trying to change. Also note that the exit 〈(SU = U, SR = R), GO〉 does not cause

the value of SW to change with probability 1, so to effectuate the change the robot

may have to execute action GO multiple times in the context (SU = U, SR = R).

Table 4.1 shows a complete list of exits identified by the VISA algorithm in the

coffee task. The table shows which state variable is affected by each exit together

with the resulting change. To generate these exits the VISA algorithm had to search

through each leaf of each conditional probability tree of the DBN model. At each

leaf, the algorithm examines whether the value of state variable Si changes, where

Si is the state variable whose conditional probabilities the current tree represents.

In other words, the complexity of this part of the algorithm is proportional to the

number of leaves of the conditional probability trees.

4.1.3 Introducing options

For each exit 〈c, a〉 with a non-empty context c, the VISA algorithm introduces an

option o = 〈I, π, β〉. Option o terminates in any state s ∈ S whose projection fC(s)

onto C equals c. We refer to the options introduced by the VISA algorithm as exit

options. Unlike regular options, an exit option associated with an exit 〈c, a〉 executes

action a following termination. Note that it is not necessary to introduce options

41

for exits with empty contexts, since these options are in fact equivalent to primitive

actions. For example, the VISA algorithm identifies an exit 〈(), GO〉 in the coffee task.

Executing action GO in any state causes the location of the robot to change, so the

option associated with this exit is equivalent to the primitive action GO. As we shall

see, it is still useful to detect exits with empty contexts.

In the coffee task example, we will adopt the convention of refering to an exit

option using the change that it causes, since this is an unambiguous and simple

notation. For example, option W → W is the exit option associated with the exit

〈(SU = U, SR = R), GO〉 that causes the value of SW to change from W to W with

non-zero probability. In general, several exits may cause the same change in the value

of a variable, and the VISA algorithm would introduce an exit option for each of these

exits, so this notation would no longer be unambiguous.

4.1.4 Initiation set

Two factors influence the initiation set I of an exit option o. Option o should only

be admissible in states from which it is possible to reach the associated context c. For

example, option W → W should only be admissible in states that assign U to SU and

R to SR. The robot has no action for getting rid of an umbrella, and it cannot affect

whether it is raining, so it can only get wet if it does not have an umbrella and it is

raining. Option o should also only be admissible if its associated exit 〈c, a〉 causes

the value of at least one state variable to change. In our example, option W → W

should only be admissible in states that assign W to SW, since otherwise the option

cannot cause the value of SW to change from W to W .

The VISA algorithm uses a sophisticated method to construct the initiation set I

of an exit option o. For each strongly connected component, the algorithm constructs

a transition graph that represents possible transitions between contexts in the joint

value set of its state variables. Each transition graph is in the form of a tree in which

42

SU SU

U U U U

true false

Figure 4.4. The transition graph (left) and reachability tree (right) of the strongly
connected component containing SU

possible transitions are represented as directed edges between the leaves. Possible

transitions are determined using the conditional probability trees of the DBN model.

Figure 4.4 illustrates the transition graph of the strongly connected component con-

taining the state variable SU in the coffee task. The robot can acquire an umbrella by

executing the exit option U → U , so there is a corresponding edge in the transition

graph between the leaf associated with states that assign U to SU and the leaf asso-

ciated with states that assign U to SU. However, the robot has no action for getting

rid of an umbrella, so there is no edge going the other way.

The VISA algorithm uses the transition graphs to construct a tree that classifies

states on the basis of whether or not the context c of the exit 〈c, a〉 associated with

option o is reachable. The algorithm starts at leaves corresponding to the context c

and uses depth-first search, traversing the edges backwards, to determine reachability.

In addition to the transition graph, Figure 4.4 also illustrates the reachability tree

associated with the strongly connected component containing SU. The reachability

tree determines whether (true) or not (false) the context (SU = U, SR = R) of the exit

〈(SU = U, SR = R), GO〉 associated with option W → W is reachable from different

states. If the context c contains values of state variables from different strongly

connected components, the VISA algorithm constructs a reachability tree for each of

the components. In our example, the VISA algorithm constructs another reachability

43

tree associated with the strongly connected component containing the state variable

SR.

In a similar way, the VISA algorithm constructs a tree that classifies states on

the basis of whether or not the associated exit changes the value of at least one

state variable in the corresponding strongly connected component. This tree can also

be constructed using the conditional probability trees of the DBN model. In our

example, states that assign W to SW map to a leaf labeled true, and states that assign

W to SW map to a leaf labeled false, since the exit 〈(SU = U, SR = R), GO〉 does not

cause the value of SW to change if its current value is W . The initiation set I of option

o is implicitly defined by the trees constructed by VISA. A state s ∈ S is an element

in I if and only if s maps to a leaf labeled true in each tree.

4.1.5 Termination condition

An exit option o terminates as soon as it reaches the context c of its associated

exit 〈c, a〉, or as soon as it can no longer reach c. Even though an exit option executes

action a following termination, we can still represent termination of the option using

the standard termination condition function β. For an exit option o, β(s) is 1 for

states in the set {s ∈ S | fC(s) = c}, where c is the associated context. β(s) is also 1

for states s /∈ I, i.e., when the process can no longer reach the associated context c.

In all other cases, β(s) = 0.

4.1.6 Policy

The VISA algorithm cannot directly define the policy π of exit option o since it

does not know the best strategy for reaching the associated context c. Instead, the

algorithm constructs an option SMDP Mo = 〈So, Oo, Ψo, Po, Ro〉 for option o that

implicitly defines its policy π. First of all, the algorithm defines So = S. Next,

the algorithm finds all strongly connected components that contain at least one state

variable whose value appears in the context c associated with option o. The algorithm

44

defines Oo as the set of options that cause the values of state variables in those strongly

connected components to change. For example, the exit option W → W is associated

with the context (SU = U, SR = R). Two strongly connected components contain

state variables whose values appear in the context: the strongly connected component

containing SU, and the strongly connected component containing SR. A single option,

U → U , causes the values of state variables to change in the former component, while

no option causes the values of state variables to change in the latter. In other words,

the option set Oo of W → W only needs to include the exit option U → U . Note

that primitive actions may affect the values of state variables in strongly connected

components for which there are no options; for example, action GO affects the value

of state variable SL.

If there are lower-level options that cause the process to leave the initiation set

of an option in Oo, the VISA algorithm includes these options in Oo as well. For

example, the exit option U → U causes the process to leave the initiation set of the

exit option W → W . If the robot does not have an umbrella and it is raining, the

exit option W → W will no longer be admissible as a result of executing the exit

option U → U causing the robot to hold an umbrella. In other words, an option

whose option set Oo includes the exit option W → W should include the exit option

U → U as well.

The VISA algorithm defines the expected reward function Ro as −1 everywhere

except when option o terminates unsuccessfully, in which case the algorithm admin-

isters a large negative reward. This ensures that the policy π of option o attempts to

reach the context c as quickly as possible. The set of admissible state-option pairs,

Ψo, is determined by the initiation sets of the options in Oo. The VISA algorithm

does not represent the transition probability function Po explicitly. It is possible to

construct a DBN model for each option similar to the DBN model for the primitive

actions. However, there is currently no technique that constructs DBN models of

45

options without enumerating all states. Since the whole point of the VISA algorithm

is to alleviate the curse of dimensionality, we want to avoid enumerating the states.

Instead, the VISA algorithm uses reinforcement learning, which does not require ex-

plicit knowledge of the transition probabilities, to learn the policy π of option o. In

Chapter 5, we develop an algorithm that constructs DBN models of options identi-

fied by the VISA algorithm without enumerating all states. The transition graphs of

strongly connected components play a part in constructing DBN models of options,

but nothing prevents options from changing the values of other state variables as well.

4.1.7 State abstraction

The VISA algorithm simplifies learning the option SMDPs by performing state

abstraction separately for each exit option. This is where causality really matters. Let

us consider all strongly connected components that contain at least one state variable

whose value appears in the context c associated with option o. Let Z ⊆ S denote

the subset of state variables contained in those strongly connected components. Let

Y ⊆ S denote the subset of state variables Si such that either Si ∈ Z or such that

there is a directed path in the causal graph from Si to a state variable in Z. For

example, in case of exit option W → W , Z = {SU, SR} and Y = {SL, SU, SR}, since

there is a directed path from SL to SU in the causal graph of the coffee task.

Recall that the goal of exit option o is to reach the context c. We know that

C ⊆ Z ⊆ Y, i.e., that the state variables whose values appear in the context c

associated with option o are contained in Y. We also know that there are no edges

from any state variable Sj /∈ Y to any state variable Si ∈ Y; if there were, state

variable Sj would have been included in Y. It follows that the option SMDP Mo

can ignore the values of state variables not in Y, since they have no influence on the

variables in C whose values we want to set to c.

46

More formally, we can define a partition that satisfies the stochastic substitu-

tion property and is reward respecting, and thus guaranteed to preserve an optimal

solution to the option SMDPMo.

Theorem 4.1.1 The projection function fY induces a partition ΛY of S that has the

stochastic substitution property and is reward respecting.

Proof The projection function fY induces a partition ΛY of S such that two states

s1 and s2 belong to the same block if and only if fY(s1) = fY(s2), i.e., if s1 and s2

assign exactly the same values to state variables in Y. Let yλ denote the assignment

to Y of states in block λ of the induced partition, i.e., for each state s ∈ λ, we have

that fY(s) = yλ. Then for each pair of states (s1, s2) ∈ S2, each action a ∈ A, and

each block λ ∈ ΛY, [s1]ΛY
= [s2]ΛY

implies that

∑

s∈λ

P (s | s1, a) =
∑

s∈λ

P (fY(s) | s1, a)P (fS−Y(s) | s1, a) =

=
∑

s∈λ

P (yλ | fY(s1), a)P (fS−Y(s) | s1, a) =

= P (yλ | fY(s1), a)
∑

s∈λ

P (fS−Y(s) | s1, a) =

= P (yλ | fY(s2), a)
∑

s∈λ

P (fS−Y(s) | s2, a) =

=
∑

s∈λ

P (yλ | fY(s2), a)P (fS−Y(s) | s2, a) =

=
∑

s∈λ

P (fY(s) | s2, a)P (fS−Y(s) | s2, a) =
∑

s∈λ

P (s | s2, a).

The equality
∑

s∈λ P (fS−Y(s) | s1, a) =
∑

s∈λ P (fS−Y(s) | s2, a) follows from the fact

that as we sum over states in λ, we go through every possible assignment of values to

state variables in the set S−Y, so in fact,
∑

s∈λ P (fS−Y(s) | s′, a) = 1 for each state

s′ ∈ S. It follows that the partition ΛY induced by fY has the stochastic substitution

property.

47

In general, the partition ΛY induced by fY is not reward respecting with respect to

the expected reward function R of the original MDP. However, recall that the expected

reward function Ro of option o is independent of the expected reward function R of

the original MDP. To form a reduced option SMDP it is sufficient that the partition

ΛY is reward respecting with respect to Ro. Ro is defined as −1 everywhere except

when the process leaves the initiation set of option o. The initiation set of option

o is completely determined by the state variables in Z ⊆ Y, so whether or not the

process leaves the initiation set depends only on those state variables. It follows that

ΛY is reward respecting with respect to Ro.

The VISA algorithm goes a step further and forms the partition ΛZ induced by

the projection fZ. In other words, the option SMDP of option o ignores all state

variables not in strongly connected components for which the value of at least one

state variable appears in the context c associated with option o.

Theorem 4.1.2 The projection function fZ induces a partition ΛZ of S that is reward

respecting and has the stochastic substitution property if and only if for each pair of

states s1, s2 ∈ S2, each option o′ ∈ Oo, and each block λ ∈ ΛZ, [s1]ΛZ
= [s2]ΛZ

implies

that Po(zλ | fY(s1), o
′) = Po(zλ | fY(s2), o

′), where zλ is the assignment of values to

Z of states in block λ.

Proof ΛZ is still reward respecting with respect to Ro. However, a state variable

in Y − Z may influence the state variables in Z, so ΛZ does not always have the

stochastic substitution property. We can write the sum
∑

s∈λ Po(s | s1, o
′) as

∑

s∈λ

Po(s | s1, o
′) =

∑

s∈λ

Po(fZ(s) | s1, o
′)Po(fS−Z(s) | s1, o

′) =

=
∑

s∈λ

Po(zλ | fY(s1), o
′)Po(fS−Z(s) | s1, o

′) =

= Po(zλ | fY(s1), o
′)
∑

s∈λ

Po(fS−Z(s) | s1, o
′) = Po(zλ | fY(s1), o

′).

48

Using the same calculations, we can obtain
∑

s∈λ Po(s | s2, o
′) = Po(zλ | fY(s2), o

′).

ΛZ has the stochastic substitution property if and only if for each pair of states

(s1, s2) ∈ S2, each option o′ ∈ Oo, and each block λ ∈ ΛZ, [s1]ΛZ
= [s2]ΛZ

implies

that Po(zλ | fY(s1), o
′) = Po(zλ | fY(s2), o

′), where fY(s1) = fY(s2) does not hold in

general.

Because of the work of Dean and Givan (1997) and Ravindran (2004), it follows

from Theorem 4.1.1 that the partition ΛY induces a reduced SMDP that preserves

optimality. Since the reduced SMDP has far fewer state-action pairs than the original

option SMDP, it is significantly easier to solve, resulting in an important reduction in

complexity. In addition, it follows from Theorem 4.1.2 that the partition ΛZ induces

a reduced SMDP that preserves optimality if and only if for each option o′ ∈ Oo, state

variables in Y−Z do not influence the state variables in Z as a result of executing o′.

Instead of solving the option SMDP directly, the VISA algorithm solves the reduced

SMDP induced by the partition ΛZ, which has even fewer state-action pairs than the

reduced SMDP induced by ΛY.

Because of the way exits are defined, the exit options discovered by the VISA

algorithm often satisfy the conditions necessary for the partition ΛZ to have the

stochastic substitution property. For example, consider the exit option W → W in

the coffee task. The only option in the set Oo is U → U , which is associated with

the exit 〈(SL = L), GU〉. Recall that with respect to option W → W , Z = {SU, SR}

and Y = {SL, SU, SR}, so Y − Z = {SL}. As a result of executing action GU, the

resulting value of state variable SU depends on the previous value of state variable

SL. However, as a result of executing the exit option U → U , the resulting value of

SU does not depend on the previous value of SL. Regardless of the previous value of

SL, option U → U always reaches the context (SL = L) prior to executing GU, which

causes the robot to pick up an umbrella with non-zero probability. It follows that the

partition ΛZ induced by fZ has the stochastic substitution property.

49

If there exists a state variable in Y − Z that influences a state variable in Z, the

partition ΛZ does not have the stochastic substitution property. In other words, an

optimal solution to the option SMDP Mo is not preserved in the reduced SMDP

induced by the partition ΛZ. A solution to the reduced SMDP only corresponds to

an approximate solution to Mo. However, we believe that there is still a reason to

perform state abstraction this way. The size of the partition ΛY may be exponentially

larger than the size of ΛZ, so the difference in learning complexity may be significant

in the two cases. We argue that the reduction in learning complexity often outweighs

the loss of exact optimality.

To take even further advantage of structure, the VISA algorithm stores the policies

of options in the form of policy trees. The benefit of using a policy tree is that the

number of leaves in the tree may be smaller than the actual number of states. At each

leaf of the policy tree, the VISA algorithm stores action-values or, more accurately

described, option-values, which indicate the utility of executing different options in

states that map to that leaf. Recall that the VISA algorithm maintains a transition

graph, in the form of a tree, for each strongly connected component in the causal

graph. The policy tree of an option can be constructed by merging the transition

graph trees of strongly connected components that contain state variables whose

values appear in the associated context. The policy tree induces a partition Λπ such

that ΛZ ≤ Λπ, i.e., the partition ΛZ refines Λπ.

Another part of abstraction is reducing the number of options in the option set

Oo of the option SMDPMo. If there are fewer options to select from, an autonomous

agent can discover more quickly which option or options result in an optimal value for

each block of the state partition. As we explained above, the VISA algorithm finds

strongly connected components that contain at least one state variable whose value

appears in the context c associated with option o. The algorithm fills the option set

Oo with options that change the values of state variables in those strongly connected

50

GO

W W

Task option

H H U U

C C C C

Figure 4.5. The hierarchy of options discovered by the VISA algorithm in the coffee
task

components. The algorithm also includes options that leave the initiation sets of

options in Oo. It is not necessary to include other options in Oo since they do not

have any impact on reaching the context c associated with option o. Thus, the VISA

algorithm limits the number of options of each option SMDP, further reducing the

complexity of learning.

4.1.8 Task option

The VISA algorithm also introduces an option, which we call the task option,

associated with the reward node in the component graph of the task. The algorithm

uses the same strategy to construct the task option as the other options. However, the

expected reward function of the task option SMDP is the same as the expected reward

function of the original MDP. In addition, the task option SMDP only discriminates

between state variables in strongly connected components that have edges to the

reward node in the component graph. The learned policy of the task option is an

approximate solution to the original MDP, which uses the other options discovered

by the VISA algorithm. Figure 4.5 shows the hierarchy of options that the VISA

algorithm comes up with in the coffee task.

51

4.1.9 Exit transformations

Sometimes it is possible to transform exits in order to take further advantage

of causality. Consider the two exits 〈(SL = L), DC〉 and 〈(SL = L, SC = C), DC〉 in

the coffee task. These exits are almost identical: their associated exit options both

terminate in states that assign the value L to state variable SL and execute action

DC following successful termination. Recall that C → C is the exit option associated

with the exit 〈(SL = L), DC〉, causing the value of SC to change from C to C. The

effect of the exit 〈(SL = L, SC = C), DC〉 is equivalent to the effect of a transformed

exit 〈(SC = C), C → C〉, i.e., reach a state that assigns C to SC and execute option

C → C following termination. The benefit of this transformation is that the exit

option H → H associated with the exit 〈(SL = L, SC = C), DC〉 no longer has to care

about the value of SL, effectively removing an edge in the component graph of the

task.

After identifying an exit, the VISA algorithm compares it to exits identified for

previous strongly connected components. If an exit transformation is possible, the

VISA algorithm performs the transformation and updates the set Z of state variables

in strongly connected components whose state variables appear in the context of the

exit. Recall that the VISA algorithm performs state abstraction by constructing the

partition ΛZ induced by the projection fZ onto the joint value set of the state variables

in Z. Exit transformations reduce the number of state variables in Z, thus reducing

the complexity of solving the associated option SMDP.

4.1.10 Merging strongly connected components

If there are many context-action pairs that cause changes, it is not particularly

useful to introduce an option for each of them. Instead, the VISA algorithm merges

two strongly connected components that are linked by too many exits. After the

VISA algorithm identifies exits for a strongly connected component, the algorithm

52

counts the number of exits identified. If the number of exits is larger than half the

total number of state-option pairs of a parent strongly connected component, those

two strongly connected components are merged. The merge operation places all

state variables in both strongly connected components into a single component, and

recomputes the exits of the new component. As a result, the complexity of solving

an associated subtask increases, since there are more state variables in the set Z.

However, the number of subtasks decreases since there are fewer exits as a result.

4.1.11 Summary of the algorithm

At this point, we feel it is appropriate to summarize the VISA algorithm. The

many steps of the algorithm make it difficult to follow. An overview of the VISA

algorithm is given in Algorithm 1.

Algorithm 1 The VISA algorithm

1: Input: DBN model of a factored MDPM with set of state variables S

2: construct the causal graph of the task
3: compute the strongly connected components of the causal graph
4: perform a topological sort of the strongly connected components
5: for each strongly connected component SC ⊆ S in topological order
6: identify exits that cause the values of state variables in SC to change
7: while the number of exits exceeds a threshold
8: merge SC with a parent strongly connected component
9: label the resulting strongly connected component SC and recompute the exits

10: for each exit 〈c, a〉 of the strongly connected component SC

11: perform any possible exit transformations
12: compute the set Z of influencing state variables
13: construct an initiation set I

14: construct a termination function β using the context c

15: construct a policy tree by merging transition graphs of parent components
16: let So be the leaves of the policy tree
17: let Oo be the set of options that cause state variable changes in Z

18: let Ψo be defined by the initiation sets of options in Oo

19: define Ro as −1 everywhere except when the context c is unreachable
20: construct the option SMDP Mo = 〈So, Oo, Ψo, Po, Ro〉, with Po undefined
21: construct an exit option o = 〈I, π, β〉, where π is the optimal policy of Mo

22: compute the transition graph of the strongly connected component SC

23: use SMDP Q-learning to learn the policies of each exit option

53

4.1.12 Limitations of the algorithm

The VISA algorithm only decomposes a task if there are two or more strongly

connected components in the causal graph of the task. Otherwise, the VISA algo-

rithm cannot exploit conditional independence between state variables to identify

options. Since the option SMDPs are stand-alone, the hierarchy discovered by the

VISA algorithm enables recursive optimality at best, as opposed to hierarchical op-

timality (Dietterich, 2000a). In addition, the VISA algorithm works best when there

are relatively few exits that cause the values of state variables in a strongly connected

component to change.

Furthermore, the option-specific state abstraction performed by the VISA algo-

rithm is independent of the way options are formed. Given access to the causal

graph, the VISA algorithm makes it possible to efficiently perform state abstraction

for any option whose goal is to reach a context specified by an assignment of values

to a subset of the state variables. For the purpose of state abstraction, it does not

matter how an autonomous agent determines that it is useful to reach that specific

context. In other words, the state abstraction part of the VISA algorithm could be

combined with other techniques for discovering useful activities, as long as they are

of the required form.

4.2 Experimental results

We ran several experiments to test the empirical performance of the VISA algo-

rithm. Since the VISA algorithm assumes that the DBN model of factored MDPs is

given prior to learning, it would be unfair to compare it to algorithms that assume

less prior knowledge. Instead, we compared the VISA algorithm to two algorithms

that also assume knowledge of the DBN model: Structured Policy Iteration, or SPI

(Boutilier et al., 1995), and symbolic Real-Time Dynamic Programming, or sRTDP

(Feng et al., 2003). SPI is a more efficient version of policy iteration that takes ad-

54

vantage of the compactness of the DBN model to approximate the value function in

the form of a tree.

sRTDP is an online planning algorithm that, at each step, constructs a set of

states that are similar to the current state according to one of two heuristics, value

and reach. The algorithm uses the DBN model to determine the set of possible next

states, and performs a masked backup of the value function restricted to the set of

current and next states. The algorithm then selects for execution one of the actions

whose current action-value estimate is highest. sRTDP stores the value function in the

form of an algebraic decision diagram, or ADD, and uses the SPUDD algorithm (Hoey

et al., 1999) to perform the masked value backup at each step. The SPUDD algorithm

includes a mechanism that limits the size of the ADDs, divides the state variables

into subsets, and decomposes the value backup into several smaller computations. In

our implementation, we did not allow the size of the ADDs to exceed 10,000 nodes.

We performed experiments with each algorithm in four tasks: the coffee task, the

Taxi task (Dietterich, 2000a), the Factory task (Hoey et al., 1999), and a simplified

version of the autonomous guided vehicle (AGV) task of Ghavamzadeh and Mahade-

van (2001). The Taxi task is described in Chapter 3. In the Factory task (Hoey et al.,

1999), a robot has to assemble a component made of two objects. Before assembly

is possible, the robot has to perform various operations on each of the two objects,

such as shaping, smoothing, polishing and painting. The objects can then be con-

nected either by drilling and bolting or by glueing. The task is described by 17 binary

variables for a total of 130,000 states, and the robot has 14 actions.

In the AGV task (Ghavamzadeh and Mahadevan, 2001), an autonomous guided

vehicle (AGV) has to transport parts between machines in a manufactoring workshop.

We simplified the task by reducing the number of machines from 4 to 2 and setting

the processing time of machines to 0 to make the task fully observable. The resulting

task is illustrated in Figure 4.6 and has approximately 75,000 states. Even though we

55

Parts

Load

0

1

2

3

4

5

6

7

8

9

10

12

11

y

x

0 1 2 3 4 5 6 7 8 9 10

Unload

Warehouse

1M

M2

P1

D1

P2

D2

Figure 4.6. Illustration of the AGV task

simplified the AGV task, it is still much larger than any task that we know of for which

discovery of activities has been successfully attempted. The goal of the AGV is to

proceed to the load station, pick up a random part i, transport it to the drop-off loca-

tion Di of machine Mi, drop it off, then proceed to the pick-up location Pi of machine

Mi, pick up the processed part, transport it to the unload station, and finally drop it

off. The AGV is restricted to move unidirectionally along the arrows in the figure, and

has to ensure that at least one part of each type is stored in the warehouse. The set

of state variables describing the task is S = {Sx, Sy, Sf , Sh, Sd1, Sp1, Sd2, Sp2, Sa1, Sa2},

where Sx and Sy represent the location of the AGV, Sf the direction it is facing, Sh

the part it is holding, Sdi the number of parts at the drop-off location Di of machine

Mi, Spi the number of parts at the pick-up location Pi, and Sai whether a part of

type i is present in the warehouse. The AGV has 6 actions: move in the direction it

is facing, turn left or right, drop off a part, pick up a part, and idle.

56

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Time (ms)

A
ve

ra
ge

 r
ew

ar
d

VISA
SPI
sRTDP_value
sRTDP_reach

Figure 4.7. Results of learning in the coffee task

Each graph that follows illustrates the average reward over 100 learning runs with

each algorithm. Since the algorithms are fundamentally different we compared the

actual running time in milliseconds. The graphs for the VISA algorithm include the

time it takes to decompose the factored MDP. We used SMDP Q-learning to learn the

option policies, which reduces to regular Q-learning for policies that select between

primitive actions. Prior to executing, sRTDP computes action ADDs; the graphs

include the time it takes to do this. We report results of both heuristics, value and

reach, used by sRTDP to construct the set of similar states. All algorithms were

coded in Java, except that the CUDD library (written in C) was used to manipulate

ADDs through the Java Native Interface.

Figure 4.7 illustrates the results of the experiments in the coffee task. The de-

composition discovered by the VISA algorithm uses a total of 26 state-option pairs to

represent the option policies. In comparison, the total number of state-action pairs

57

0 0.5 1 1.5 2 2.5

x 10
4

−1

−0.5

0

0.5

Time (ms)

A
ve

ra
ge

 r
ew

ar
d

VISA
SPI
sRTDP_value
sRTDP_reach

Figure 4.8. Results of learning in the Taxi task

of the original task is 256. We believe this is the reason that learning converges faster

using the hierarchy discovered by VISA. However, the VISA algorithm performs only

marginally better than the other algorithms in the coffee task.

Figure 4.8 illustrates the results of the experiments in the Taxi task. In the Taxi

task, the VISA algorithm performs significantly better than the other algorithms.

The reason that the VISA algorithm outperforms the other algorithms is that VISA

decomposes the task into smaller, stand-alone tasks that are easier to solve without

ever enumerating the entire state space. In the Taxi task, the VISA algorithm reduces

the number of state-option pairs from 3,000 in the original task to approximately

800 in the decomposition. In addition, the options introduced by VISA facilitate

exploration by providing subgoals that direct the taxi towards the ultimate goal of

delivering the passenger.

58

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5

Time (ms)

A
ve

ra
ge

 r
ew

ar
d

VISA
sRTDP_reach
sRTDP_value

Figure 4.9. Results of learning in the Factory task

Figure 4.9 illustrates the results of the experiments in the Factory task of the

VISA algorithm and sRTDP. The VISA algorithm decomposes the task in 5 seconds

and learning converges after 20 seconds. SPI ran out of memory after running for

several hours. sRTDP converges after approximately 1 second, and thus outperforms

the VISA algorithm in this task. We believe that the reason sRTDP performs well in

this task is that the solution path is relatively short (5-10 steps) and that intermediate

reward is provided along the way. sRTDP is thus able to focus quickly on states that

lead to the goal, and never has to perform value backups for irrelevant states. Since

the VISA algorithm uses reinforcement learning to learn the policy of the options, it is

more likely to get sidetracked through exploration, causing learning to be somewhat

slower. Since the solution path is already short, hierarchical decomposition has a less

positive impact on exploration.

59

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6

7

8
x 10

−3

Time (ms)

A
ve

ra
ge

 r
ew

ar
d

VISA
sRTDP_reach

Figure 4.10. Results of learning in the AGV task

Figure 4.10 illustrates the results of the experiments in the AGV task of the VISA

algorithm and sRTDP using the reach heuristic. In this case, the VISA algorithm

reduces the number of state-option pairs from 450,000 to approximately 16,000. The

VISA algorithm decomposes the task in roughly 6 seconds and learning converges

after 20 seconds. In comparison, SPI ran out of memory after 3 hours. sRTDP

using the reach heuristic completes the task a few times within the first minute of

running time but convergence is much slower than VISA. During our experiments,

sRTDP using the value heuristic failed to complete the task even once within the first

15 minutes. The AGV task has a much longer solution path than the Factory task

(approximately 100 steps) and reward is only provided upon completion of the task.

To correctly propagate values throughout the state space, sRTDP has to complete the

task many times. In contrast, the options introduced by VISA guide the AGV towards

60

completing the task and help update the value more quickly. Selecting between

options, the solution path only requires 8 steps.

The results of the experiments illustrate the power of hierarchical decomposition

when combined with option-specific abstraction. Even though SPI and sRTDP take

advantage of task structure and are empirically faster than regular reinforcement

learning algorithms, they still suffer from the curse of dimensionality as the size of the

state space grows. On the other hand, the VISA algorithm decomposes the original

tasks into smaller, stand-alone tasks that are easier to solve without ever enumerating

the state space. Instead, the complexity of the decomposition is polynomial in the

size of the conditional probability trees of the DBN model. Each stand-alone task

only distinguishes between values of a subset of the state variables, which means that

the complexity of learning does not necessarily increase with the number of state

variables.

4.3 Discussion

It is possible to combine the VISA algorithm with several of the other techniques

for scaling reinforcement learning. For example, once the VISA algorithm has de-

composed a task into options, we can apply reinforcement learning with function

approximation to learn the option policies. Another possibility is to use existing

algorithms to detect bottlenecks in the transition graph of a strongly connected com-

ponent in the causal graph. This would enable further decomposition of the option

SMDPs into even smaller subtasks.

Recall that the VISA algorithm performs state abstraction for an option SMDP

by constructing the partition ΛZ induced by the projection fZ, where Z ⊆ S is the set

of state variables in strongly connected components whose variable values appear in

the context of the associated exit. As a result of state abstraction, the option policy

may be suboptimal. The problem occurs when an option selected by the option policy

61

changes the value of a state variable not in Z that indirectly influences state variables

in Z. This problem would be alleviated if we merge strongly connected components

whose state variables are affected by the same actions. The resulting decomposition

would be less efficient in terms of learning complexity but would guarantee recursive

optimality.

4.4 Related work

There exist several other algorithms that decompose tasks into a hierarchy of

activities, one of which is the HEX-Q algorithm (Hengst, 2002) already mentioned.

Nested Q-learning (Digney, 1996) introduces an activity for each value of each state

variable. The goal of each activity is to reach the context described by the single state

variable value. McGovern and Barto (2001) use diverse density to locate bottlenecks

in successful solution paths, and introduce activities that reach these bottlenecks.

Şimşek and Barto (2004) measure the relative novelty of each visited state, and in-

troduce activities that reach states whose relative novelty exceeds a threshold value.

Recent work on intrinsic motivation Barto et al. (2004) tracks salient changes in

variable values and introduces activities that cause salient changes to occur.

Other researchers use graph-theoretic approaches to decompose tasks. Menache

et al. (2002) construct a state transition graph and introduce activities that reach

states on the border of strongly connected regions of the graph. The authors use a

max-flow/min-cut algorithm to identify border states in the transition graph. Mannor

et al. (2004) use a clustering algorithm to partition the state space into different

regions and introduce activities for moving between regions. Şimşek et al. (2005)

identify subgoals by partitioning local state transition graphs that represent only the

most recently recorded experience. Bulitko et al. (2005) decompose deterministic

tasks by repeatedly clustering states into abstract states and constructing a new

62

transition graph for the abstract states. At each level of abstraction, the authors

introduce activities that move between abstract states.

Another approach is to track learning in several related tasks and identify activities

that are useful across tasks. SKILLS (Thrun and Schwartz, 1996) identifies activities

that minimize a function of the performance loss induced by the resulting hierarchy

and the total description length of all actions. PolicyBlocks (Pickett and Barto, 2002)

identifies regions in the state space for which the policy is identical across tasks, and

introduces activities that represent the policy of each region. Each activity is only

admissible within its region of the state space.

Helmert (2004) developed an algorithm that constructs a causal graph similar to

that of the VISA algorithm and uses the graph to decompose deterministic planning

tasks. The algorithm assumes a STRIPS formulation of actions (Fikes and Nilsson,

1971), which is similar to the DBN model of factored MDPs. Just like the DBN

model, the STRIPS formulation expresses actions in terms of causes and effects on the

state variables, except that the causes and effects are deterministic. Helmert (2004)

uses the STRIPS action formulation to construct a causal graph in a special class of

deterministic tasks, in which the causal graph has one absorbing state variable with

edges from each other state variable. The author shows that his algorithm efficiently

solves a set of standard planning tasks using activities to represent the stand-alone

tasks of the resulting decomposition.

The VISA algorithm presented in this chapter is based on the assumption that

the values of key state variables change relatively infrequently. This is the same

assumption made by Hengst (2002), Helmert (2004), and Barto et al. (2004). Just

like the HEX-Q algorithm (Hengst, 2002), the VISA algorithm decomposes a task into

activities by detecting the combinations of state variable values and actions that cause

key variable value changes. However, as we already discussed, the VISA algorithm

uses the causal graph to represent how state variables are related, which is a more

63

realistic model than that used by HEX-Q. Unlike intrinsic motivation (Barto et al.,

2004), the VISA algorithm does not need to designate certain variable value changes

as salient. Unlike the work of Helmert (2004), the VISA algorithm can handle any

configuration of the causal graph.

Most other existing algorithms need to accumulate extensive experience in the

environment to decompose a task into activities, and usually store quantities for each

state. Assuming that the DBN model is given, the VISA algorithm does not need to

accumulate experience in the environment to perform the decomposition. In addition,

the VISA algorithm only stores quantities proportional to the size of the conditional

probability trees of the DBN model. Although we do not provide any comparisons,

it is likely that the VISA algorithm uses less memory and performs decomposition

of a task in less time than these other algorithms. Naturally, the assumption that

key variable value changes occur relatively infrequently may not always hold, and

the DBN model may not always be given. We believe that these are the two main

drawbacks of our algorithm.

There are several efficient algorithms for solving factored MDPs that use the DBN

model to compactly describe transition probabilities and expected reward. Structured

Policy Iteration, or SPI (Boutilier et al., 1995), stores the policy and value function in

the form of trees. The algorithm performs policy iteration by intermittently updating

the policy and value function, possibly changing the structure of the trees in the

process. Hoey et al. (1999) modified SPI to include algebraic decision diagrams, or

ADDs, which store conditional probabilities more compactly than trees. Symbolic

Real-Time Dynamic Programming, or sRTDP (Feng et al., 2003), also assumes that

the conditional probabilities of the DBN model are stored using ADDs. The algorithm

clusters states into abstract states based on two criteria, and performs an efficient

backup of the value of the current abstract state following each execution of an action

in the environment.

64

The DBN-E3 algorithm (Kearns and Koller, 1999) assumes that there exists an

approximate planning algorithm for the task, and that the structure of the DBN

model is given. Using the planning procedure as a subroutine, the algorithm explores

the state space and fills in the parameters of the DBN model. The running time

of the algorithm is polynomial in the number of parameters of the DBN model,

generally much smaller than the number of states. Guestrin et al. (2001) developed

an algorithm based on linear programming that combines the DBN model with max-

norm projections to solve factored MDPs. The algorithm assumes that there is a set

of basis functions for representing the value function and is guaranteed to converge

to an approximately optimal solution.

65

CHAPTER 5

CONSTRUCTING COMPACT OPTION MODELS

In the previous chapter, we devised an algorithm, the VISA algorithm, that uses

the DBN model of factored MDPs to decompose tasks into hierarchies of activities.

The VISA algorithm identifies exits, pairs of a context and an action that causes the

value of a state variable to change, and introduces an exit option associated with

each exit. For each exit option, the VISA algorithm constructs an option SMDP

that implicitly represents the option policy. Since the VISA algorithm does not have

access to an estimate of the transition probabilities of the option SMDP, it cannot

use planning algorithms to solve the option SMDP. Instead, the VISA algorithm uses

SMDP Q-learning, which does not require knowledge of the transition probabilities,

to learn the policies of the options.

As we already discussed, there exist several efficient algorithms for solving factored

MDPs which assume that a DBN model is given. These algorithms take advantage

of the compact structure inherent in the DBN model to construct efficient solutions.

If the VISA algorithm had access to DBN models that compactly describe the effect

of options, it would be possible to apply these existing algorithms to efficiently solve

the option SMDPs of the exit options. Access to DBN models of options would

open up new possibilities for learning and planning with options. Unfortunately,

there are currently no techniques that compute compact models of activities without

enumerating the state space. Since the goal of the VISA algorithm is to alleviate the

curse of dimensionality, we want to avoid enumerating the state space if possible.

66

In this chapter, we devise an algorithm for computing compact option models

without enumerating the state space. Our work combines the compactness of the DBN

model with the simplification offered by hierarchical decomposition. Once an option

has been learned, it can be cached and added to the set of actions for subsequent

learning and planning. We enhance the description of a learned option by constructing

a compact representation of its effect on the state variables, making it possible to

learn and plan with options using the more efficient algorithms that take advantage

of compact representations.

This chapter makes several contributions. First, we analyze the complexity of

constructing a model that makes it possible to treat a learned option as a single unit

during learning and planning. We investigate how to reduce the complexity through

the use of partitions with certain properties. Finally, we show how to construct parti-

tions with the required properties for exit options discovered by the VISA algorithm.

To construct partitions, we develop novel operations on decision trees.

5.1 Multi-time option models

Sutton et al. (1999) defined the multi-time model of an option o = 〈I, π, β〉 as

P (s′ | s, o) =
∞
∑

t=1

γtP (s′, t | s, o), (5.1)

R(s, o) = E{
t
∑

k=1

γk−1R(sk, ak) | s1 = s}, (5.2)

where t is the number of time steps until o terminates, and P (s′, t | s, o) is the

probability that o terminates in state s′ after t time steps when executed in state

s. The expectation in the expression for R(s, o) is taken over the distribution of

state-action pairs (sk, ak), k ∈ [1, t]. This distribution is determined by the functions

P (sk+1 | sk, ak), π(sk, ak), and β(sk). The terms P (s′ | s, o) are not true probabilities

since they do not sum to 1 for γ < 1. However, the multi-time model enables learning

67

and planning with options as single units, which Sutton et al. (1999) call SMDP value

learning and SMDP planning, respectively.

It is possible to use dynamic programming to compute the multi-time model in

Equations (5.1) and (5.2). We can set up the Bellman form of the equations in which

each term is a function of the terms at the next time step:

P (s′ | s, o) = γ
∑

a∈A

π(s, a)

[

P (s′ | s, a)β(s′) +
∑

s′′∈S

P (s′′ | s, a)(1− β(s′′))P (s′ | s′′, o)

]

,

(5.3)

R(s, o) =
∑

a∈A

π(s, a)

[

R(s, a) + γ
∑

s′∈S

P (s′ | s, a)(1− β(s′))R(s′, o)

]

. (5.4)

Let us label each state with a unique subscript i ∈ {1, . . . , |S|}. Let P a, a ∈ A, be

the transition matrix for action a whose entry (i, j) equals P (sj | si, a), and let P o be

the corresponding matrix for option o. Let Πa, a ∈ A, be the diagonal matrix whose

entry (i, i) equals π(si, a), and let B be the diagonal matrix whose entry (i, i) equals

β(si). Let Ra, a ∈ A, be the vector whose ith entry equals R(si, a), and let Ro be the

corresponding vector for option o. To avoid confusion with the option initiation set

I, we use E to denote the identity matrix. Then we can write the equations for the

multi-time model of option o in matrix form as

P o = γ
∑

a∈A

ΠaP a(B + (E −B)P o), (5.5)

Ro =
∑

a∈A

Πa(Ra + γP a(E −B)Ro). (5.6)

The unknown quantities that we want to solve for are P o and Ro. If we move the

unknowns to the left-hand side of the equations we obtain the following system of

equations:
[

E − γ
∑

a∈A

ΠaP a(E −B)

]

P o = γ
∑

a∈A

ΠaP aB, (5.7)

[

E − γ
∑

a∈A

ΠaP a(E −B)

]

Ro =
∑

a∈A

ΠaRa. (5.8)

68

Definition 5.1.1 An option o is proper if for each state si ∈ I, o eventually termi-

nates with probability 1.

Definition 5.1.1 imposes a restriction on the policy π and termination condition func-

tion β of an option o.

Theorem 5.1.2 For a proper option o, the systems of linear equations in (5.7) and

(5.8) are consistent and have unique solutions.

Note that the unknown quantities P o and Ro are multiplied by the same matrix

M =
[

E − γ
∑

a∈A ΠaP a(E −B)
]

. The systems of linear equations in (5.7) and (5.8)

are consistent and have unique solutions if and only if matrix M is invertible, i.e., if

the determinant of M is non-zero. The complete proof of Theorem 5.1.2 appears in

Appendix A.

The complexity of computing the multi-time model of an option o is comparable

to the complexity of computing an optimal policy of an MDP using dynamic program-

ming. If it is possible to compute an optimal policy in the time it takes to compute

the multi-time model of a single option, there is little need to decompose the task into

options in the first place. It follows that computing the multi-time model of an option

o is comparatively costly. To efficiently compute compact models of the transition

probabilities and expected reward of options, we would like to develop techniques for

reducing the complexity.

5.2 Options in factored MDPs

Recall that in a factored MDP, it is possible to approximate the transition prob-

abilities as products of the conditional probabilities of each state variable Sd ∈ S:

P (s′ | s, a) ≈
∏

Sd∈S

Pd(f{Sd}(s
′) | fPa(Sd)(s), a).

69

It is possible to approximate the terms of the multi-time model in a similar way.

However, the multi-time model of an option o has two distributions that resemble

transition probabilities: P (s′ | s, o), the discounted probability of transitioning from s

to s′ as a result of executing o; and P (s′, t | s, o), the exact probability of transitioning

from s to s′ in t time steps as a result of executing o. We can choose which of the

two distributions to approximate.

If we choose to approximate P (s′ | s, o), we obtain the following approximation:

P (s′ | s, o) ≈
∏

Sd∈S

Pd(f{Sd}(s
′) | fPa(Sd)(s), o). (5.9)

Since we do not (yet) have access to a DBN model of option o, we assume that all

state variables are parents of Sd, so fPa(Sd)(s) = fS(s) = s. We can compute the

terms Pd(f{Sd}(s
′) | s, o) in the same way as the multi-time model:

Pd(f{Sd}(s
′) | s, o) =

∞
∑

t=1

γtPd(f{Sd}(s
′), t | s, o). (5.10)

As a result, we obtain the following final approximation of Equation (5.1):

P (s′ | s, o) ≈
∏

Sd∈S

∞
∑

t=1

γtPd(f{Sd}(s
′), t | s, o). (5.11)

The approximation in Equation (5.11) enables us to compute the conditional prob-

abilities Pd(c{d} | s, o) of the multi-time model separately for each state variable Sd.

Here, c{d} denotes a context described by one of the values of state variable Sd.

If we instead choose to approximate P (s′, t | s, o), we obtain the following alter-

native approximation of Equation (5.1):

P (s′ | s, o) =
∞
∑

t=1

γtP (s′, t | s, o) ≈
∞
∑

t=1

∏

Sd∈S

γtPd(f{Sd}(s
′), t | s, o). (5.12)

70

Note that the difference between Equations (5.11) and (5.12) is the order of the

summation and the product. As a result, Equation (5.11) assigns non-zero probability

to events that could never occur, such as “the value of state variable SL becomes L

in 2 time steps, and the value of state variable SW becomes W in 3 time steps.” This

event could never occur since an option could not simultaneously terminate after 2

time steps and 3 time steps. In this sense, Equation (5.12) is a better approximation

of P (s′ | s, o), but on the other hand, it does not enable us to compute a multi-time

model of option o separately for each state variable. As we shall see, the ability to

decompose the computation significantly reduces the complexity of computing the

multi-time model. We believe that the reduction in complexity justifies the loss of

accuracy, although we currently have no bounds on the approximation error. For this

reason, we will use Equation (5.11) as our approximation of Equation (5.1).

For each state variable Sd, each state s ∈ S, and each context c{d}, we want to

compute the term Pd(c{d} | s, o), given by

Pd(c{d} | s, o) = γ
∑

a∈A

π(s, a)
∑

s′∈S

P (s′ | s, a)
[

β(s′)δc{d},f{Sd}(s′) + (1− β(s′))Pd(c{d} | s
′, o)
]

,

(5.13)

where δi,j is Kronecker’s delta. Let P o
d be the transition matrix for option o and state

variable Sd whose entry (i, j) equals Pd(c{d} = j | si, o). Let Fd be the matrix whose

entry (i, j) equals 1 if f{Sd}(si) = j, and 0 otherwise. In other words, P o
d and Fd are

|S| × |V al(Sd)| matrices. Then we can write (5.13) as

P o
d = γ

∑

a∈A

ΠaP a(BFd + (E −B)P o
d). (5.14)

Let us again move all unknowns to the left side of the equation to obtain

[

E − γ
∑

a∈A

ΠaP a(E −B)

]

P o
d = γ

∑

a∈A

ΠaP aBFd. (5.15)

71

Lemma 5.2.1 For a proper option o, the system of linear equations in (5.15) is

consistent and has a unique solution.

The proof of Lemma 5.2.1 follows directly from the proof of Theorem 5.1.2 since the

matrix M =
[

E − γ
∑

a∈A ΠaP a(E −B)
]

that we need to invert to solve (5.15) is the

same as the matrix in (5.7) and (5.8).

5.3 Partitions

Recall that a partition Λ of the state set S that has the stochastic substitution

property and is reward respecting induces a reduced MDP that preserves optimality.

We define three more properties of partitions of S with respect to a factored MDP

M and an option o:

Definition 5.3.1 A partition Λ of S is policy respecting if for each pair of states

(si, sj) ∈ S2 and each action a ∈ A, [si]Λ = [sj]Λ implies that π(si, a) = π(sj, a).

Definition 5.3.2 A partition Λ of S is termination respecting if for each pair of

states (si, sj) ∈ S2, [si]Λ = [sj]Λ implies that β(si) = β(sj).

Definition 5.3.3 A partition Λ of S respects a state variable Sd if for each pair of

states (si, sj) ∈ S2, [si]Λ = [sj]Λ implies that f{Sd}(si) = f{Sd}(sj).

Using these definitions, it is possible to construct partitions that simplify computation

of the multi-time model of an option o, which we prove in the following two lemmas:

Lemma 5.3.4 Let o be a proper option and let Λd be a partition that has the stochas-

tic substitution property, is policy respecting, termination respecting, and respects

state variable Sd. Then for each pair of states (si, sj) ∈ S2 and each context c{d},

[si]Λd
= [sj]Λd

implies that Pd(c{d} | si, o) = Pd(c{d} | sj, o).

72

Proof Since Λd is termination respecting, the termination condition β(sk) is equal

for states sk ∈ λ in block λ of partition Λd. Let βλ denote the common termination

condition β(sk) of states sk ∈ λ. Since Λd respects state variable Sd, the projection

f{Sd}(sk) is equal for states sk ∈ λ in block λ of partition Λd. Let fλ denote the

common projection f{Sd}(sk) of states sk ∈ λ. Assume that for each block λ, each

state sk ∈ λ, and each context c{d}, the probability Pd(c{d} | sk, o) is equal, and let

P o
λ,c{d}

denote that probability. We will show that Pd(c{d} | si, o) = Pd(c{d} | sj, o)

checks under this assumption if [si]Λd
= [sj]Λd

.

From Equation (5.13), the expression for Pd(c{d} | si, o) is given by

γ
∑

a∈A

π(si, a)
∑

s′∈S

P (s′ | si, a)
[

β(s′)δc{d},f{Sd}(s′) + (1− β(s′))Pd(c{d} | s
′, o)
]

.

We can expand the sum
∑

s′∈S by first summing over blocks λ of partition Λd and

then over states sk in block λ:

γ
∑

a∈A

π(si, a)
∑

λ∈Λd

∑

sk∈λ

P (sk | si, a)
[

β(sk)δc{d},f{Sd}(sk) + (1− β(sk))Pd(c{d} | sk, o)
]

=

= γ
∑

a∈A

π(si, a)
∑

λ∈Λd

∑

sk∈λ

P (sk | si, a)
[

βλδc{d},fλ
+ (1− βλ)P

o
λ,c{d}

]

.

Since the terms within the parentheses do not depend on sk, we can move them

outside the summation over sk to obtain

Pd(c{d} | si, o) = γ
∑

a∈A

π(si, a)
∑

λ∈Λd

[

βλδc{d},fλ
+ (1− βλ)P

o
λ,c{d}

]

∑

sk∈λ

P (sk | si, a).

We can expand the expression for Pd(c{d} | sj, o) in the same way to obtain

Pd(c{d} | sj, o) = γ
∑

a∈A

π(sj, a)
∑

λ∈Λd

[

βλδc{d},fλ
+ (1− βλ)P

o
λ,c{d}

]

∑

sk∈λ

P (sk | sj, a).

Since Λd has the stochastic substitution property, [si]Λd
= [sj]Λd

implies that that
∑

sk∈λ P (sk | si, a) =
∑

sk∈λ P (sk | sj, a) for each action a ∈ A and each block λ

73

of partition Λd. Since Λd is policy respecting, [si]Λd
= [sj]Λd

implies that π(si, a) =

π(sj, a) for each action a ∈ A. It follows that Pd(c{d} | si, o) = Pd(c{d} | sj, o) checks

under the assumption that we made above. Lemma 5.2.1 states that the solution to

the equations in (5.15) is unique. Since we know that Pd(c{d} | si, o) = Pd(c{d} | sj, o)

is a solution, it follows from Lemma 5.2.1 that it is the only solution. This concludes

the proof.

Because of the properties of Λd, each matrix in Equation (5.15) corresponds to a

reduced, equivalent matrix, which we denote using subscript Λd. Instead of one row

or column per state si ∈ S, the reduced matrix has one row or column per block

λi ∈ Λd. The reduced system of linear equations for state variable Sd and option o is

given by
[

E − γ
∑

a∈A

Πa
Λd

P a
Λd

(E −BΛd
)

]

P o
Λd

= γ
∑

a∈A

Πa
Λd

P a
Λd

BΛd
FΛd

. (5.16)

Lemma 5.3.5 Let o be a proper option and let ΛR be a partition that has the stochas-

tic substitution property, is reward respecting, policy respecting, and termination re-

specting. Then for each pair of states (si, sj) ∈ S2, [si]ΛR
= [sj]ΛR

implies that

R(si, o) = R(sj, o).

Proof Since ΛR is termination respecting, the termination condition β(sk) is equal

for states sk ∈ λ in block λ of partition ΛR. Let βλ denote the common termination

condition β(sk) of states sk ∈ λ. Assume that for each state sk ∈ λ, the expected

reward R(sk, o) as a result of executing option o is equal, and let Ro
λ denote that

expected reward. We will show that R(si, o) = R(sj, o) checks under this assumption

if [si]ΛR
= [sj]ΛR

.

From Equation (5.4), the expression for R(si, o) is given by

R(si, o) =
∑

a∈A

π(si, a)

[

R(si, a) + γ
∑

s′∈S

P (s′ | si, a)(1− β(s′))R(s′, o)

]

.

74

We can expand the sum
∑

s′∈S by first summing over blocks λ of partition ΛR and

then over states sk in block λ:

R(si, o) =
∑

a∈A

π(si, a)

[

R(si, a) + γ
∑

λ∈ΛR

∑

sk∈λ

P (sk | si, a)(1− β(sk))R(sk, o)

]

=

=
∑

a∈A

π(si, a)

[

R(si, a) + γ
∑

λ∈ΛR

∑

sk∈λ

P (sk | si, a)(1− βλ)R
o
λ

]

.

We move terms that do not depend on sk outside the summation over sk to obtain

R(si, o) =
∑

a∈A

π(si, a)

[

R(si, a) + γ
∑

λ∈ΛR

(1− βλ)R
o
λ

∑

sk∈λ

P (sk | si, a)

]

.

We expand the expression for R(sj, o) in the same way to obtain

R(sj, o) =
∑

a∈A

π(sj, a)

[

R(sj, a) + γ
∑

λ∈ΛR

(1− βλ)R
o
λ

∑

sk∈λ

P (sk | sj, a)

]

.

Since ΛR has the stochastic substitution property, [si]ΛR
= [sj]ΛR

implies that that
∑

sk∈λ P (sk | si, a) =
∑

sk∈λ P (sk | sj, a) for each action a ∈ A and each block λ of

partition ΛR. Since ΛR is policy respecting, [si]ΛR
= [sj]ΛR

implies that π(si, a) =

π(sj, a) for each action a ∈ A. Since ΛR is reward respecting, [si]ΛR
= [sj]ΛR

implies

that R(si, a) = R(sj, a) for each action a ∈ A. It follows that R(si, o) = R(sj, o)

checks under the assumption that we made above. Theorem 5.1.2 states that the

solution to the equations in (5.8) is unique. Since we know that R(si, o) = R(sj, o) is

a solution, it follows from Theorem 5.1.2 that it is the only solution. This concludes

the proof.

Because of the properties of ΛR, each matrix in Equation (5.8) corresponds to a

reduced, equivalent matrix, which we denote using subscript ΛR. The reduced system

of linear equations corresponding to Equation (5.8) is given by

75

[

E − γ
∑

a∈A

Πa
ΛR

P a
ΛR

(E −BΛR
)

]

Ro
ΛR

=
∑

a∈A

Πa
ΛR

Ra
ΛR

. (5.17)

To solve Equation (5.16) we need to invert a |Λd| × |Λd| matrix. To solve Equation

(5.17) we need to invert a |ΛR| × |ΛR| matrix. If the Λd and ΛR are significantly

smaller than the set of states S, the partitions result in a considerable reduction in

the complexity of computing the multi-time model of option o.

5.4 Finding useful partitions

In the previous section, we showed that partitions can reduce the complexity of

computing a multi-time option model in factored MDPs. In this section, we show how

to find useful partitions that satisfy the desired properties for options discovered by

the VISA algorithm presented in the previous chapter. As in the previous chapter,

we will use the coffee task (Boutilier et al., 1995) to illustrate our algorithm. To

construct the partitions, we first introduce two novel operations on trees.

5.4.1 Tree operations

We illustrate the tree operations on the tree T GO

W
that stores the conditional proba-

bilities of state variable SW as a result of executing action GO in the coffee task. Figure

5.1 illustrates T GO

W
, which also appears in Figure 2.1. The tree T GO

W
induces a partition

Λ of S such that two states si and sj belong to the same block of the partition if and

only if they map to the same leaf of the tree. Each leaf L of the tree is associated

with a context cL; for example, the context associated with the left-most leaf of T GO

W

is (SW = W).

Definition 5.4.1 The restriction of a tree T to a context c, which we denote T | c,

is the tree that results from clamping the values of the state variables in the set C ⊆ S

to c and collapsing the tree T .

76

SW SW

SU

SU

SR

R

U

W

R

U

W WW

UU

Figure 5.1. The tree T GO

W
and the restriction T GO

W
| (SR = R)

Figure 5.1 shows the restriction of T GO

W
to the context (SR = R). As the figure shows,

the restriction clamps the value of state variable SR to R. Since the value of SR is

known, there is no longer any need to distinguish between values of SR, so we can

collapse the tree at the node associated with SR. The subtree rooted at SU becomes

the new child of the root node associated with the value W of state variable SW.

Restriction is similar to retrieval (Cockett, 1985).

Definition 5.4.2 The intersection of two trees T1 and T2, which we denote T1 ∩ T2,

is the tree such that two states si and sj map to the same leaf if and only if they map

to the same leaves of both T1 and T2.

The intersection of two trees T1 and T2 can be computed by appending the tree T2 | cL

to each leaf L of T1. Let TU denote the tree that only distinguishes between values

of state variable SU. Figure 5.2 shows T GO

W
, TU, as well as the intersection T GO

W
∩ TU.

Intersection resembles to leaf composition (Moret, 1982) and logical operations on

decision trees that represent indicator functions. Intersection is also similar to the

merge operation of Boutilier et al. (2000).

77

U

U

U

UU

SW SW

SR RS

SU

SU

SU

SU SU

U

U

WW

RR

U WW

RRU

UU

Figure 5.2. The trees T GO

W
, TU, and the intersection T GO

W
∩ TU

5.4.2 Constructing partitions for exit options

In this section, we show how to identify partitions that reduce the complexity of

computing a multi-time model of the exit options discovered by the VISA algorithm.

Let o be an exit option whose goal it is to reach the context c of the associated exit

〈c, a〉. Recall that the VISA algorithm learns the policy π of an option in the form

of a tree. Let T o
π be the policy tree of exit option o. For example, Figure 5.3 shows

the policy of the exit option associated with the exit 〈(SL = L), BC〉 in the coffee task.

Each leaf L of T o
π is associated with a set of actions AL selected by the policy π with

non-zero probability in states that map to L. The policy tree T o
π induces a partition

Λπ of S such that two states si and sj belong to the same block of Λπ if and only if

si and sj map to the same leaf of T o
π . Λπ is policy respecting since the policy is equal

for all states that map to the same leaf of T o
π . Assume that one or several leaves of

T o
π correspond to the context c of the associated exit; then Λπ is also termination

respecting, since β(si) = 1 for states that map to those leaves and β(si) = 0 for all

other states.

For each state variable Sd, we want to construct a partition Λd that has the

stochastic substitution property, is policy respecting, termination respecting and re-

78

SL

L L

BC GO

Figure 5.3. The policy of the exit option associated with the exit 〈(SL = L), BC〉

spects state variable Sd. We begin by computing T o
π ∩ Td, the intersection between

T o
π and the tree Td that only distinguishes between values of Sd (cf. TU in Figure

5.2). The resulting tree induces a partition that is policy respecting and termination

respecting because of T o
π , and respects state variable Sd because of Td.

To construct a partition Λd which also has the stochastic substitution property,

we repeatedly apply MakeSSP in Algorithm 2 to T o
π ∩ Td until the structure of the

tree does not change between successive iterations. The intuition is that in order for

a tree to induce an SSP partition, the context cL at each leaf L of the tree has to be

sufficient to determine possible transitions to other leaves of the tree as a result of

executing an action a ∈ AL. If the context cL is insufficient to determine transitions,

we refine the tree at L. Each time the tree is refined, we label new leaves with the

corresponding set of policy actions.

Algorithm 2 MakeSSP(T)

1: Input: Tree T
2: for each leaf L of T and each action a ∈ AL

3: N ← root of T
4: Refine(L, a,N)

As an example, consider the exit option o associated with the exit 〈(SL = L), BC〉 in

the coffee task. We want to identify ΛW, the partition associated with state variable

SW. We start with the policy tree T o
π of option o in Figure 5.3 and compute the

intersection T o
π ∩TW, shown in Figure 5.4. Next, we apply MakeSSP to T o

π ∩TW. The

context of the right-most leaf of T o
π ∩TW is (SL = L, SW = W). As a result of executing

79

Algorithm 3 Refine(L, a,N)

1: Input: Leaf L, action a, tree node N
2: if N is a leaf node, stop
3: Sd ← state variable at node N
4: determine the probability distribution Pd(k | cL, a) over possible values k ∈ V al(Sd)
5: if cL is insufficient to determine the probability distribution Pd(k | cL, a)
6: append the tree T a

d | cL to leaf L
7: else for each k ∈ V al(Sd) such that Pd(k | cL, a) > 0
8: Nk ← child k of node N
9: Refine(L, a, Nk)

W W

L

W

L

W

R

U

SL SL

SW SW

SR

SU

SWSW

GO GO

GO

GOBC BC

BC BC GOGO

W W

L
L

W W

R

U

Figure 5.4. The tree T o
π ∩ TW and the result of MakeSSP(T o

π ∩ TW)

80

GO, this context is sufficient to determine a distribution over V al(SL), the possible

resulting values of SL, the state variable at the root of the tree. However, to determine

whether the robot will get wet, we also need to know if it is raining, and possibly

whether the robot has an umbrella. Since the context (SL = L, SW = W) is insufficent

to determine a distribution over V al(SW), we append T GO

W
| (SL = L, SW = W) to

the right-most leaf. The result is shown in Figure 5.4. Subsequent applications of

MakeSSP does not change the structure of the tree, so the induced partition has all

the desired properties.

The tree that results from repeatedly applying MakeSSP to T o
π ∩ Td induces

a partition Λd that has the stochastic substitution property, is policy respecting,

termination respecting, and respects state variable Sd. From Lemma 5.3.4 it follows

that we can construct a reduced system of linear equations according to Equation

(5.16) to compute the conditional probability model of state variable Sd for exit

option o. The reduced system of linear equations has one row or column for each

block of Λd instead of one row or column for each state in S. In our example, the

resulting partition ΛW has 6 blocks as compared to the 64 states in S.

To construct a partition ΛR for computing the expected reward of exit option o,

we proceed in a similar way. Start with the policy tree T o
π . At each leaf L of T o

π ,

append the tree ∩a∈AL
T a

R | cL, where T a
R is the tree that determines the expected

reward associated with action a in the DBN model. The partition induced by the

resulting tree is reward respecting, policy respecting, and termination respecting.

Then apply MakeSSP repeatedly until convergence in order to construct a partition

which also has the stochastic substitution property. From Lemma 5.3.5 it follows that

we can construct a reduced system of linear equations according to Equation (5.17)

to compute the expected reward associated with exit option o.

81

5.4.3 Distribution irrelevance

Dietterich (2000b) defined a condition that he calls result distribution irrelevance:

a subset of the state variables may be irrelevant for the resulting distribution of

an activity. This condition only exists in the undiscounted case, i.e., for γ = 1.

Otherwise, the time it takes the activity to terminate influences subsequent reward.

We can take advantage of distribution irrelevance to compute the multi-time model

of an exit option when γ = 1. Let o be the exit option associated with the exit 〈c, a〉.

Since o terminates in the context c, we know the value of each state variable in the set

C ⊆ S right before action a is executed. In other words, the values of state variables

in the set C prior to executing o are irrelevant for the resulting distribution of o.

Because of distribution irrelevance, we do not need to solve Equation (5.16) for

state variables in the set C. Instead, the conditional probabilities associated with

state variable Sd ∈ C and option o are given by the tree T a
d | c. For example, as a

result of executing the exit option associated with the exit 〈(SL = L), BC〉 in the coffee

task, the value of state variable SL is L right before executing BC. The conditional

probabilities of SL are given by T BC

L
| (SL = L), which is a tree with just a root node.

As a result of executing the option that acquires coffee, the location of the robot is

always the coffee shop, regardless of its previous location.

We can also simplify computation of conditional probabilities for state variables

that are unaffected by actions that the policy selects. Let Uo ⊆ S denote the subset

of state variables whose value does not change as a result of executing any action

selected by the policy π of exit option o. For the exit option o associated with exit

〈(SL = L), BC〉 in the coffee task, Uo = {SU, SR, SC, SH}, since the values of these state

variables do not change as a result of executing GO, the only action selected by the

policy of o. The conditional probabilities of state variables in the set Uo unaffected

by the policy actions are also given by T a
d | c.

82

5.4.4 Summary of the algorithm

At this point, we stop to summarize the steps of our algorithm. Algorithm 4

outlines our algorithm for computing a compact multi-time model of an exit option.

Algorithm 4 Computing a compact multi-time option model

1: Input: DBN model of a factored MDPM, exit option o
2: let 〈c, a〉 be the exit associated with o, where c is an assignment to C ⊆ S

3: let Oo be the set of options in the option SMDP Mo associated with o

4: let U
o ⊆ S be the set of state variables unaffected by options in the set Oo

5: let T o
π be the tree storing option o’s policy π

6: for each state variable Sd ∈ S

7: if Sd ∈ C ∪U
o

8: T o
d ← T

a
d | c

9: copy labels at the leaves of T a
d | c to obtain the probability distribution P o

d

10: else

11: T o
d ←MakeSSP(T o

π ∩ Td)
12: let Λd be the partition of S induced by T o

d

13: set up and solve Equation (5.16) to obtain the probability distribution P o
d

14: Let AL ⊆ A be the set of actions selected by the policy π at leaf L of T o
π

15: Let TR be the tree that results from appending ∩a′∈AL
T a′

R | cL at each leaf L of T o
π

16: T o
R ←MakeSSP(TR)

17: let ΛR be the partition of S induced by T o
R

18: set up and solve Equation (5.17) to obtain the expected reward distribution Ro

5.5 DBN model for options

When we have computed the conditional probability tree associated with each

state variable for an exit option o, as well as a tree representing expected reward, we

can construct a DBN for the option just like for primitive actions. Figure 5.5 shows

the DBN for the exit option associated with the exit 〈(SL = L), BC〉 in the coffee task

when γ = 1 and we take advantage of distribution irrelevance. Note that there is no

edge to state variable SL, which indicates that the resulting location does not depend

on any of the state variables.

The conditional probability tree associated with state variable SW has 6 leaves, and

the tree associated with expected reward has 12 leaves. The complexity of inverting

a general n × n matrix is O(n3), i.e., the time it takes to solve each equation of

83

R

U

W

L

W

SL

SU

SR

SW

SC

SH

SL

SU

SR

SW

SC

SH

SL

SW SW

SR

SU

[1, 0] [1, 0][0, 1]

[0, 1]

[0, 1] [.91, .09]

W

R

U

L

W

R R

Figure 5.5. DBN for the option associated with 〈(SL = L), BC〉

Table 5.1. Complexity of computing a multi-time model for each exit option

Exit Change Computation time

〈(SL = L), BC〉 C → C 1, 700k
〈(SL = L), DC〉 C → C 1, 700k
〈(SL = L, SC = C), DC〉 H → H 22, 000k
〈(SL = L), GU〉 U → U 1, 700k
〈(SU = U, SR = R), GO〉 W → W 0

the multi-time model is approximately kn3, where k is a constant. Partitions and

distribution irrelevance reduce the total computation time from 643k = 260, 000k in

the exact case to 63k + 123k = 1, 700k. Table 5.1 shows the total time it takes to

compute a compact model of the exit option associated with each exit in the coffee

task. The complexity of computing a compact model of each exit option is vastly

reduced using our technique. Naturally, the efficiency of our technique depends on

the nature of the task; the technique will work better if there are at least two strongly

connected components in the causal graph and if there is a limited number of exits.

84

Since the DBN model of an option is in the same form as the DBN models of prim-

itive actions, we can treat the option as a single unit and apply any of the algorithms

that take advantage of compact representations. In addition, the DBN model makes

it possible to apply our technique to nested options, i.e., options selecting between

other options. Once the policy of an option has been learned, we can construct its

DBN model and use that model both to learn the policy of a higher-level option and

later to construct a DBN model of the higher-level option.

5.6 Experimental results

We used our approach to construct DBN models of options discovered by the VISA

algorithm in the Taxi task (Dietterich, 2000a). We used Structured Policy Iteration,

or SPI (Boutilier et al., 1995), which takes advantage of DBN models, to compute a

policy of each option. At the top level, we ran SPI to compute a policy that selects

between the identified options. Note that SPI at the top level is only possible after we

construct the multi-time model of each exit option. We compared the performance

of this scheme, which we call hierarchical SPI, with SPI on the flat task. Figure 5.6

illustrates the average reward over 100 trials for the two schemes. The graph for

hierarchical SPI includes the time it takes VISA to decompose the task, running SPI

on each of four individual options, applying our technique for constructing a DBN

model of each option, and running SPI at the top level. Even so, hierarchical SPI

still converges much faster than flat SPI. Since the VISA algorithm treats options

as stand-alone tasks, it can only achieve recursive optimality at best, as opposed to

hierarchical optimality (Dietterich, 2000a). We believe this accounts for the slightly

lower level of reward of hierarchical SPI after convergence.

85

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−1

−0.5

0

0.5

Time (ms)

A
ve

ra
ge

 r
ew

ar
d

Hierarchical SPI
Flat SPI

Figure 5.6. Hierarchical vs. flat SPI in the Taxi task

5.7 Discussion

Our algorithm for constructing DBN models for options relies on partitions with a

preestablished set of properties to reduce the complexity of computing compact option

models. The requirement that the partitions should have all of these properties is

quite strong. A possible line of future research is to relax or approximate the required

properties of partitions, which could lead to even more efficient computation of option

models, albeit with some loss of accuracy. An analysis of the resulting approximation

could help determine a tradeoff between the complexity of computing compact option

models and the accuracy of the resulting model.

We also made a strong independence assumption in order to reduce the complexity

of computing a compact option model. Our algorithm assumes that the value of a

state variable that results from executing an option is independent of the resulting

values of other state variables. Since an option takes variable time to execute, the

86

option passes through many states during execution. The independence assumption

only holds if the resulting values of state variables are independent regardless of

which state the option is currently in. In many cases, our independence assumption

induces an approximation error. If possible, we would like to establish bounds on this

approximation error to analyze the accuracy of our algorithm.

5.8 Related work

Sutton et al. (1999) developed the multi-time model of options that we used in this

chapter. The multi-time model includes an estimate of the transition probabilities and

expected reward of options. Using the multi-time model of an option, it is possible to

treat the option as a single unit during learning and planning. SMDP value learning

(Sutton et al., 1999) uses the multi-time model to learn values or action-values in an

SMDP. SMDP planning (Sutton et al., 1999) uses the multi-time model to perform

planning in an SMDP, similar to policy iteration.

There has not been a lot of other research on constructing models of activities.

The completion function in MAXQ (Dietterich, 2000a) can be viewed as a model of

the expected reward of the activity. The H-Tree algorithm (Jonsson and Barto, 2001)

that we presented in Chapter 3 estimates a model of the transition probabilities and

expected reward of the options in a partially observable semi-Markov decision process,

or POSMDP. This model is compact since the history of an option is partitioned using

a U-Tree, but is usually only approximate.

87

CHAPTER 6

LEARNING DBN MODELS OF FACTORED MDPS

Recall that the DBN model of a factored MDP compactly represents the transition

probabilities and expected reward of the MDP. In a DBN model, actions are defined

in terms of probabilistic causes and effects on the state variables of the MDP. In

previous chapters, we assumed that we had access to a DBN model prior to learning

in a factored MDP. We developed several algorithms that exploit DBN models to

decompose and simplify a task. In addition, there exist several other algorithms that

use DBN models to efficiently solve factored MDPs.

A DBN model may not be available prior to solving a factored MDP. In this

chapter, we address the problem of learning DBN models from experience. There exist

algorithms in the literature for learning the structure of Bayesian networks (Buntine,

1991; Friedman et al., 1998; Heckerman et al., 1995). However, these algorithms

assume that a data set is given, whereas solution techniques for MDPs typically

have to gather data in the form of transitions and reward through interaction with

the environment. The complexity of learning DBNs heavily depends on the time it

takes to collect data. It is possible to accelerate data collection by selecting high-

quality data instances through a process called active learning. Researchers have

developed techniques for active learning of Bayesian networks (Murphy, 2001; Steck

and Jaakkola, 2002; Tong and Koller, 2001). These techniques perform experiments

by clamping a subset of the variables to fixed values and sampling over the remaining

variables.

88

We assume that it is only possible to sample MDPs along trajectories, not in

arbitrary states. The only way to gather information about transitions and reward is

by executing an action in the current state. Since it is not possible to simulate the

effect of actions in hypothetical states, we cannot perform experiments by clamping

a subset of the variables to fixed values. Consequently, we cannot apply existing

techniques for active learning. However, there is still an opportunity to perform

active learning of DBNs in factored MDPs. Because the DBN model of a factored

MDP consists of one DBN for each action, by selecting an action we effectively select

a DBN for which to collect data. It is thus possible to consider policies for action

selection whose utility lie in efficient data collection.

We develop an algorithm for learning DBNs that grows trees representing the con-

ditional probabilities of the DBNs. Our algorithm collects data instances by executing

actions and extends a tree as soon as a minimum number of data instances correspond

to each relevant value of each split variable. The algorithm uses the Bayesian Infor-

mation Criterion, or BIC (Schwartz, 1978), and the likelihood-equivalent Bayesian

Dirichlet metric, or BDe (Heckerman et al., 1995), to evaluate potential refinements.

We assume that no data is available to begin with and develop a method for active

learning of DBNs to accelerate data collection. The time to collect data is minimized

if the distribution of data instances across values of each potential split variable is

perfectly uniform. We use the entropy of the distributions to measure uniformity and

select actions that maximize the total entropy of the distributions.

In some tasks, the BIC and BDe scores fail to detect most of the refinements

necessary to learn an accurate DBN model. This is a serious issue since algorithms

that take advantage of DBNs to solve factored MDPs depend on the accuracy of the

DBN model. We address this issue by applying regularization (Poggio and Girosi,

1990) to the BIC score. The BIC score is composed of a log likelihood term and

a penalty term. This quantity fits nicely into the regularization framework if we

89

multiply the penalty term by a parameter λ. Empirical results show that varying λ

can increase the accuracy of the learned DBN model.

Our work is related to the problem of exploration in reinforcement learning (Sutton

and Barto, 1998). Existing exploration techniques do not learn DBN models of MDPs.

Since there exist several efficient algorithms that use DBNs to solve factored MDPs,

there is a benefit to learning this representation. Our approach does not require

enumeration of the state space, as opposed to several exploration methods. Since we

want to scale to large state spaces, we do not want to store quantities whose size is

proportional to the number of states.

6.1 Learning the structure of Bayesian networks

Structure learning is the problem of finding the Bayesian network B = 〈G, θ〉

that best fits a data set D = {x1, . . . ,xn}. Each element x ∈ D is an assignment

of values to the set of variables X of the Bayesian network. A common approach is

to compute the posterior probability distribution P (B | D) over Bayesian networks

and choose the network that maximizes P (B | D). Two common approximations

of P (B | D) are the Bayesian Information Criterion, or BIC (Schwartz, 1978), and

the likelihood-equivalent Bayesian Dirichlet metric, or BDe (Heckerman et al., 1995).

From Bayes theorem it follows that P (B | D) ∝ P (D | B)P (B). The BIC score

makes the approximation

log[P (D | B)P (B)] ≈ L(D | B)−
|θ|

2
log |D|, (6.1)

where L(D | B) is the log likelihood of D given B. If the data set D contains no

missing values, the log likelihood decomposes as

L(D | B) =
∑

i

∑

j

∑

k

Nijk log θijk,

90

where Nijk is defined as the number of data points x ∈ D such that fPa(Xi)(x) = j and

f{Xi}(x) = k, and θijk = P (Xi = k | Pa(Xi) = j). The log likelihood is maximized

for θijk = Nijk/
∑

k Nijk. The BDe score makes the approximation

P (D | B)P (B) ≈
∏

i

∏

j

Γ(
∑

k N ′
ijk)

Γ(
∑

k[N
′
ijk + Nijk])

∏

k

Γ(N ′
ijk + Nijk)

Γ(N ′
ijk)

, (6.2)

where N ′
ijk are hyperparameters of a Dirichlet prior and Γ(x) is the Gamma function.

Finding the Bayesian network with highest BIC or BDe score is NP-complete

(Chickering et al., 1995). However, both scores decompose into a sum of terms for

each variable Xi and each value j of Pa(Xi) and k of Xi (in the case of the BDe score,

we need to take the logarithm first). The score only changes locally when we add

or remove edges between variables in the directed acyclic graph G of the network.

Researchers have developed hill-climbing algorithms that perform greedy search to

find high-scoring Bayesian networks by repeatedly adding or removing edges between

variables in G (Buntine, 1991; Heckerman et al., 1995). These algorithms have been

extended to DBNs (Friedman et al., 1998).

6.2 Learning a DBN model of factored MDPs

We develop an algorithm for learning DBN models of factored MDPs through

interaction with the environment. Our algorithm builds a tree T a
i for each pair of a

state variable Si and action a, approximating the conditional probabilities of Si as

a result of executing a. The family of trees for a implicitly defines the DBN for a.

There is an edge between state variables Sj and Si in the DBN if at least one node

in T a
i distinguishes between values of Sj.

To build the tree T a
i , the algorithm starts with a small tree and collects data by

executing actions in the environment. Each time action a is executed, the algorithm

records a data instance xa. In a DBN, a data instance consists of two assignments

91

SW

WW

Figure 6.1. Intermediate configuration of the tree T GO

W
during learning

to each state variable: one assignment corresponding to the current time step, and

one assignment corresponding to the next time step. Since the DBN model has

one node for each state variable and one node for expected reward, a data instance

xa = (s, r, s′) consists of the state s prior to executing a, the reward r received as a

result, and the state s′ following execution of a. The DBN model assumes that the

reward received during the previous time step does not influence the resulting values

of state variables or the expected reward, so a data instance does not need to include

the previous reward.

The tree T a
i stores the probability distribution over values of state variable Si as

a result of executing a, conditional on the previous values of the state variables. In

other words, the tree T a
i makes distinctions between values of state variables prior

to executing a. It follows that each data instance xa maps to exactly one leaf of

T a
i according to the state s that was recorded prior to executing a. A data instance

xa is stored at the unique leaf that it maps to. We say that a leaf is empty if its

corresponding set of data instances is empty.

For example, say that we are growing the tree T GO

W
storing the conditional prob-

abilities of state variable SW as a result of executing action GO in the coffee task.

Assume that the current configuration of T GO

W
is the one in Figure 6.1. Also assume

that we execute action GO in state s = (L, U,R,W,C,H), and that as a result, the

process transitions to state s′ = (L,U,R,W,C,H) and the learning agent receives a

92

reward r = 0.1. Our algorithm records a data instance xGO = (s, r, s′), which maps to

the right-most leaf of T GO

W
, since state s assigns the value W to state variable SW.

A refinement at a leaf distinguishes between values of a state variable Sj prior

to executing action a and introduces a new leaf of T a
i for each value of Sj. A state

variable Sj is only considered for refinement if no internal nodes on the path from

the root to the leaf of T a
i already distinguish between values of Sj. The BIC and

BDe scores decompose into a local score for each leaf of T a
i . Our algorithm evaluates

a refinement by comparing the total score of the new leaves with the score of the

old leaf. If at least one refinement increases the overall score, the algorithm retains

the refinement that results in the largest increase. Regardless of the outcome, data

instances at the old leaf are discarded. Our approach is more sophisticated than

adding edges in the graph of the DBN, since trees store conditional probabilities

more compactly than tables.

When the algorithm evaluates a refinement, it performs a statistical test to com-

pare the posterior probabilities of two Bayesian networks given the data. It is well

known that the accuracy of statistical tests, such as Chi-square, depends on having

enough examples in each bin. At each leaf, and for each potential split variable Sj,

the algorithm maintains a distribution vector M . Each entry Mk of the vector indi-

cates the number of data instances at the leaf that assign the value k to Sj. When

the algorithm evaluates a refinement over Sj, the distribution vector M determines

how the data instances at the leaf will be distributed to the new leaves of T a
i . We

define a parameter K and let our algorithm evaluate a refinement as soon as at least

K data instances map to each non-empty leaf for each split variable.

In our example, five state variables are potential split variables at the right-most

leaf of the tree T GO

W
: SL, SU, SR, SC, and SH. No internal node on the path from

the root of the tree to the right-most leaf makes a distinction between values of any

of these state variables. For each potential split variable, our algorithm maintains

93

a distribution vector M . The data instance xGO = (s, r, s′) that was recorded in our

example contributes a count to the value L in the distribution vector M corresponding

to potential split variable SL, since state s of the data instance assigns the value L to

SL. Similarly, the data instance xGO contributes a count to the distribution vector of

each other potential split variable.

In some tasks, the BIC and BDe scores fail to detect most of the refinements

necessary to learn an accurate DBN model. The BIC score in Equation (6.1) is

composed of a log likelihood term, which measures the likelihood of the data given a

network, and a penalty term, which penalizes a network for having many parameters.

The penalty term causes the BIC score to be less sensitive to improvements to the

log likelihood since each refinement increases the number of parameters. We use

regularization (Poggio and Girosi, 1990) to address this issue. In regularization, a

functional is defined as the sum of a fidelity term and a stabilizer term. The stabilizer

term is weighted by a parameter λ. We can multiply the penalty term of the BIC

score by a parameter λ to put it in the form of a fidelity term and a stabilizer term:

log[P (D | B)P (B)] ≈ L(D | B)− λ
|θ|

2
log |D|, (6.3)

such that λ controls the magnitude of the penalty for having many parameters.

6.2.1 Active learning

Efficient data collection should gather sufficient data as quickly as possible. Since

our algorithm requires at least K data instances to map to each non-empty leaf, the

distribution of data instances across new leaves should be as uniform as possible for

each possible refinement. The more skewed the distribution is after collecting enough

data instances, the longer it takes to collect sufficient data to evaluate refinements.

We devise the following scheme for active learning of DBNs. Recall that the state

s prior to executing action a determines which leaf of T a
i a data instance xa maps

94

to. In other words, we already know which leaf a data instance will map to prior to

executing a. For each state variable Si and each action a, we find the leaf of the tree

T a
i that the next data instance will map to. When deciding which action to execute,

we look at how the distribution vectors at each of those leaves would change as a

result of executing the corresponding action. To evaluate the change, we compute

the entropy H(M) of each distribution vector M :

H(M) = −
∑

k

θk log θk,

where θk = Mk/
∑

j Mj. H(M) is a non-negative function which is maximized when

all entries of M are equal. An increase in H(M) means that the distribution is

becoming more uniform; a decrease means that it is becoming more skewed. The

change in H(M) can be computed in constant time. In each state, the active learning

scheme selects the action with largest total increase in the value of H(M). With

probability ε ∈ [0, 1], or if no action results in an increase of H(M), the scheme

selects a random action. Our active learning scheme only implicitly changes the

frequency with which leaves are visited; it assumes that each leaf is visited relatively

frequently.

For example, assume that we are learning the DBN model of the coffee task, and

that the current state is s = (L,U,R,W,C,H). Further assume that the current

configuration of the tree T GO

W
is the one in Figure 6.1, and that the distribution vector

associated with state variable SL is M = [5, 8] at the right-most leaf. In other words,

there are 5 data instances stored at the leaf that assign the value L to SL, and 8 data

instances that assign the value L to SL. If we were to execute action GO in the current

state, the algorithm would record a new data instance xGO = (s, r, s′). The algorithm

does not yet know what r and s′ will be. However, the algorithm does know that since

the current state s assigns the value W to state variable SW, the new data instance

xGO will map to the right-most leaf of T GO

W
.

95

We also show how the algorithm computes the change in entropy. We can write

the entropy H(M) in the following way, letting N =
∑

j Mj:

H(M) = −
∑

k

Mk

N
log

Mk

N
=

= −
∑

k

Mk

N
(log Mk − log N) =

= −
1

N

∑

k

Mk log Mk +
log N

N

∑

k

Mk =

= −
1

N

∑

k

Mk log Mk + log N.

Let M ′ be the distribution vector after adding a count to the entry Mi of M . It follows

that M ′
i = Mi + 1, that M ′

k = Mk for each k 6= i, and that N ′ =
∑

j M ′
j = N + 1.

Then we can write H(M ′) in the following way:

H(M ′) = −
1

N ′

∑

k

M ′
k log M ′

k + log N ′ =

= −
1

N + 1

∑

k 6=i

Mk log Mk −
1

N + 1
(Mi + 1) log(Mi + 1) + log(N + 1) =

=
N

N + 1

[

H(M) +
Mi log Mi

N
− log N

]

−
(Mi + 1) log(Mi + 1)

N + 1
+ log(N + 1).

In our example, the entropy prior to recording a new data instance is

H(M) = −
1

5 + 8
(5 log 5 + 8 log 8) + log(5 + 8) ≈ 0.666.

The current state s assigns the value L to state variable SL, so the resulting dis-

tribution vector is M ′ = [6, 8]. The change in entropy as a result of executing GO

is

H(M ′)−H(M) ≈
13

14

[

0.666 +
5 log 5

13
− log 13

]

−
6 log 6

14
+ log(14)− 0.666 ≈ 0.017.

96

To evaluate action GO, the algorithm has to compute the change in entropy for each

potential split variable at the right-most leaf of T GO

W
. In addition, the algorithm has

to evaluate the change in entropy for trees that store the conditional probabilities of

other state variables as a result of executing GO, following the same strategy.

6.2.2 Summary of the algorithm

At this point, we stop to summarize the steps of our algorithm. Algorithm 5

outlines our algorithm for active learning of a DBN model of a factored MDP.

Algorithm 5 Active learning of a DBN model

1: Input: Factored MDPM, parameters K, ε
2: initialize trees T a

i and distributions M

3: do until convergence
4: for each action, compute the total entropy of distributions at corresponding leaves
5: with probability ε, or if the total entropy of each action is less than 0
6: a← random action
7: else

8: a← action with highest total entropy
9: execute action a and record a data instance x

a = (s, r, s′)
10: for each state variable Si ∈ S

11: append x
a to the corresponding leaf of tree T a

i

12: update the distributions M

13: if at least K data instances map to each non-empty leaf
14: for each potential split variable Sj

15: evaluate the local BIC or BDe score of the refinement
16: if at least one refinement increases the BIC or BDe score
17: retain the refinement that increases the score the most
18: redistribute the data instances at the leaf to the new leaves

6.3 Results

We ran experiments with our DBN learning approach in the coffee task (Boutilier

et al., 1995), the Taxi task (Dietterich, 2000a), and the same simplified autonomous

guided vehicle (AGV) task that we used in Chapter 4 (Ghavamzadeh and Mahadevan,

2001). In each task, we compared our active learning scheme with passive learning,

i.e., random action selection. We had access to the true DBN model of each task and

97

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

1

2

3

4

5

6

7

8

Time steps

A
ve

ra
ge

 c
or

re
ct

 r
ef

in
em

en
ts

Active BIC
Passive BIC
Active BDe
Passive BDe

Figure 6.2. Results of learning DBNs in the coffee task

knew how many refinements of the conditional probability trees were necessary to

learn the true model. Figure 6.2 shows results of our experiments in the coffee task.

The graph shows the number of correct refinements (out of 7) detected over time,

averaged over 100 trials. The error bars show the standard deviation of the number

of correct refinements across trials. For each tree T a
i , we used the parameter values

ε = 0.3, K = 50Ni, where Ni is the number of values of the state variable Si whose

conditional probabilities T a
i approximates. Note that active learning outperformed

passive learning and that the BIC and BDe scores performed almost identically.

In the Taxi task, the BIC and BDe scores fail to detect most of the refinements

necessary to learn the true DBN model. We tested our modification to the BIC score

in Equation (6.3) to see if regularization can improve the accuracy of the learned

DBN model. Figure 6.3 shows results of the experiments in the Taxi task, averaged

over 25 trials. In the Taxi task, the true DBN model requires 21 refinements. We

98

0 2 4 6 8 10 12

x 10
5

0

5

10

15

20

Time steps

A
ve

ra
ge

 c
or

re
ct

 r
ef

in
em

en
ts

Active BIC, λ=.1
Passive BIC, λ=.1
Active BIC, λ=1.0
Passive BIC, λ=1.0

Figure 6.3. Results of learning DBNs in the Taxi task

used ε = 0.6, K = 50Ni, and report results of the BIC score for λ = 0.1 and λ = 1.

The BDe score performed identically to the BIC score for λ = 1. Note that active

and passive learning using the original BIC score (λ = 1) failed to detect many of

the refinements of the true DBN model. With λ = 0.1, active and passive learning

detected all of the refinements.

We simplified the AGV task by reducing the number of machines to 2 and made

it fully observable by setting the processing time of machines to 0. The resulting task

has 75,000 states and 6 actions, and the true DBN model requires 162 refinements.

Figure 6.4 shows results of the experiments in the AGV task, averaged over 5 trials.

We used ε = 0.6, K = 50Ni, and report results of the BIC score for λ = 0.1 and

λ = 1. There are several interesting things to notice. First, learning was very slow.

We collected data for 200,000,000 time steps, and it is not clear that the algorithms

even converged. The learned DBN model did not come close to the true model, even

99

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
8

0

10

20

30

40

50

60

70

Time steps

A
ve

ra
ge

 c
or

re
ct

 r
ef

in
em

en
ts

Active BIC, λ=.1
Passive BIC, λ=.1
Active BIC, λ=1.0
Passive BIC, λ=1.0

Figure 6.4. Results of learning DBNs in the AGV task

for λ = 0.1. Also, passive learning actually outperformed active learning in the AGV

task. We believe this is due to the fact that our active learning scheme selects actions

based on local information, which we elaborate on in the conclusion. The results

of the experiments in the AGV task indicate that learning DBN models of factored

MDPs is a challenging problem, even using state-of-the-art metrics such as the BIC

and BDe scores.

6.4 Discussion

Our algorithm selects actions according to an active learning scheme based on

local information, i.e., how the distributions change locally as a result of executing

actions. This works well in tasks with limited size when all states are visited relatively

frequently. However, as experimental results show, in large tasks our scheme may fail

to explore large regions of the state space, prefering to maintain uniformity in the

100

current region. To ensure that most or all of the state space is visited it is necessary

to select actions based on global information. If global information is stored using

trees, the amount of memory is proportional to the number of leaves of the trees, not

to the number of states, facilitating scaling. Reaching a specific region of the state

space is difficult when we can only sample the current trajectory since we may not

know which actions will get us there. Activities may provide a useful tool to achieve

this.

When we learn a DBN model of a factored MDP, what we are ultimately inter-

ested in is the ability to learn a behavior that is useful in the task that the factored

MDP models. In other words, to evaluate a DBN model of a factored MDP, we

should measure the expected future reward of policies learned by algorithms that

take advantage of the DBN model. For this purpose, it would be useful to develop

a utility measure for DBN models that quickly estimate the expected future reward

that resulting policies can achieve. Such a measure could be used to guide action

selection in an active learning scheme that attempts to maximize the utility measure

of the current DBN model.

6.5 Related work

The Bayesian Information Criterion, or BIC, was first proposed by Schwartz

(1978). It is motivated by the posterior probability of a probabilistic model given

a set of data instances. The Bayesian Dirichlet metric first appeared in the work

of Cooper and Herskovits (1992). Heckerman et al. (1995) modified the Bayesian

Dirichlet metric to make it likelihood-equivalent, resulting in the BDe score that we

used in this chapter.

Several researchers have studied the problem of learning the structure of Bayesian

networks. Buntine (1991) proposed several algorithms that refine the structure of an

initial Bayesian network to improve its ability to represent the data. Heckerman et al.

101

(1995) used their BDe metric to evaluate Bayesian networks and developed a greedy

algorithm that improves the metric by repeatedly adding and removing edges in the

directed acyclic graph of the network. Friedman et al. (1998) extended structure

learning to DBNs, and also considers the case for which the data contains missing

values.

Active learning of Bayesian networks was suggested by several researchers around

the same time (Murphy, 2001; Tong and Koller, 2001; Steck and Jaakkola, 2002).

These techniques perform experiments by clamping a subset of the variables to fixed

values and sample over the remaining variables. By varying the fixed values, it is

possible to determine whether two or more variables are correlated, thereby deciding

which edges to include in the directed acyclic graph of the network. Empirical results

indicate that active learning can significantly reduce the time it takes to learn the

network structure.

Regularization was first suggested by Poggio and Girosi (1990) in the context of

artificial neural networks as a way to enhance the ability to generalize across a set of

data instances. Researchers have developed methods that automatically determine

optimal regularization parameters (MacKay, 1992). Regularization has also been

applied to other areas of machine learning, such as support vector machines (Evgeniou

et al., 2000). Our application of regularization to the BIC score is similar to the BIC-δ

criterion proposed by Broman (1997).

Recall that the DBN model represents the transition probabilities and expected

reward, i.e., the dynamics, of a factored MDP. Several researchers have developed ex-

ploration techniques for reinforcement learning that also execute actions with the goal

of estimating the dynamics of an MDP as quickly as possible. Dearden et al. (1999)

take a Bayesian approach to estimating the dynamics of an MDP, and use a gain

metric to select actions that improve the estimate. Model-based interval estimation

(Wiering, 1999) uses confidence intervals on the estimated probability distributions

102

of the MDP to select actions. Interval estimation was first generalized to MDPs

by Kaelbling (1993). Strehl and Littman (2004) empirically compared three explo-

ration techniques in reinforcement learning and concluded that model-based interval

estimation can dramatically increase the observed learning rate.

103

CHAPTER 7

CONCLUSION

We have presented a series of novel algorithms that aim at facilitating scaling

of reinforcement learning to increasingly large tasks. Our approach to scaling is to

simplify a task as much as possible prior to applying reinforcement learning. Since re-

inforcement learning algorithms have been empirically shown to work better in small

tasks, simplifying a task gives reinforcement learning a better chance of successfully

approximating a solution. A common theme of our algorithms is the use of hier-

archical decomposition and state abstraction to reduce the complexity of learning.

Hierarchical decomposition and state abstraction both exploit the structure present

in a task to reduce the size of the task prior to learning a policy.

An option is one formalization of the idea of an activity that can take more than

a single time-step to complete. Our first algorithm, the H-Tree algorithm, performs

state abstraction separately for each option in an existing hierarchy of options. The

algorithm uses the U-Tree algorithm (McCallum, 1995) to perform state abstraction

by recording transition instances, each of which maps to a unique leaf of a tree.

The H-Tree algorithm takes advantage of intra-option state abstraction by using

experience recorded during execution of one option to perform state abstraction for

other options. The transition instances of the H-Tree algorithm also make it possible

to organize memory in a hierarchical way, which reduces the amount of memory

necessary to remember key events. Experimental results illustrate the benefits of

option-specific state abstraction.

104

Our next algorithm, VISA, dynamically decomposes factored MDPs into hierar-

chies of options. The VISA algorithm assumes that the DBN model of a factored

MDP is given prior to learning, and uses the DBN model to construct a causal graph

describing how state variables are related. The algorithm then searches in the condi-

tional probability trees of the DBN model for exits, i.e., combinations of state variable

values and actions that cause the values of other state variables to change. The VISA

algorithm introduces an option for each exit and uses sophisticated techniques to

construct the components of each option. The result is a hierarchy of options in

which the policy of an option selects between options at a lower level in the hierarchy.

Experimental results in a series of tasks show that the VISA algorithm significantly

outperforms other algorithms based on the DBN model of a task.

Our third algorithm is a method for computing compact models of the options

discovered by the VISA algorithm. Existing methods for computing compact op-

tion models do not scale well to large tasks. Reinforcement learning algorithms can

approximate optimal policies even when the transition probabilities of options are

unknown. For this reason, VISA uses reinforcement learning to approximate an op-

timal policy of each option. If the VISA algorithm had access to compact option

models, it could use dynamic programming techniques to compute the option policies

without interacting with the environment. Our algorithm constructs partitions with

certain properties to reduce the complexity of computing compact option models.

The algorithm computes a DBN model for each option identical to the DBN model

for primitive actions. This makes it possible to apply existing algorithms that use the

DBN model to efficiently approximate option policies.

Finally, we developed an algorithm for active learning of the DBN model in case it

is not given prior to learning. Our algorithm constructs the DBN model by growing

trees representing the conditional probabilities of the model. The algorithm executes

actions according to an active learning scheme that attempts to maximize the total

105

entropy of distributions at the leaves of the trees. Following the execution of an

action, the algorithm records a data instance. When enough data instances map to

a leaf, the algorithm evaluates possible refinements at the leaf. The algorithm uses

principled measures of the posterior probability of a network to evaluate how the

posterior probability changes as a result of a refinement. If at least one refinement

increases the posterior probability, the algorithm retains the refinement that results

in the largest increase.

We did not perform sensitivity analysis to see how robust our algorithms are to

noise. Any time the resulting value of a state variable is uncertain, a DBN learning

algorithm could mistakenly interpret the uncertainty as evidence of conditional de-

pendence. As a result, the DBN model would incorrectly contain additional edges.

We tested our algorithm in several tasks in which the outcome of actions is stochastic,

i.e., the resulting values of state variables are uncertain. In these tasks, the algorithm

did not introduce additional edges in the DBN model. However, we did not perform

experiments in which we varied the probabilities of resulting state variable values.

It would also be interesting to know how sensitive the VISA algorithm is to errors

in the DBN model. What if there are too many or too few edges in the DBNs? We

have reason to suspect that the VISA algorithm is quite sensitive to model error. If

there are too few edges, the VISA algorithm could fail to detect several subtasks,

which would be detrimental to learning the policies of higher-level options. On the

other hand, if there are too many edges, the VISA algorithm would likely identify all

subtasks. However, additional edges could make the causal graph contain a smaller

number of strongly connected components, each of a larger size. Since the complex-

ity of solving a subtask depends on the size of the strongly connected components,

additional edges could make the algorithm less efficient at solving the subtasks.

106

7.1 Future work

Needless to say, there remains a lot of work to be done for reinforcement learning

to scale to a wide range of realistic tasks, and this dissertation only represents a step

in that direction. It is our firm belief that reinforcement learning remains a viable

approach for approximating solutions to sequential decision problems, if supported by

the right machinery. Function approximation and algorithms that exploit structure

have the potential to provide this machinery as they continue to develop. A funda-

mental part of exploiting structure is determining the right representation of a task,

so developing novel representations is another key aspect of scaling reinforcement

learning.

Ravindran (2004) developed several representations that take advantage of sym-

metry in a task. Executing an action in one part of the state space may have the same

symmetrical effect as executing another action in a different part of the state space.

In addition, a region of the state space may repeat itself, offering an opportunity to

reuse partial policies for acting in that region. Relativized options (Ravindran and

Barto, 2003) are defined without an absolute frame of reference and can be used to

represent partial policies that are useful in several regions of the state space. Although

Ravindran provides a framework for exploiting symmetry, there exist few algorithms

that efficiently detect symmetry in a task from experience.

Relational reinforcement learning (Dz̆eroski et al., 1998) combines reinforcement

learning with relational representations that enable the use of objects and relations

between objects. Relational reinforcement learning opens up a new range of possi-

bilities for hierarchical decomposition and state abstraction. For example, relational

representations enable different types of hierarchies, such as classes and subclasses

of objects. How to automate hierarchical decomposition and state abstraction in

relational reinforcement learning is still an open question.

107

Mahadevan (2005) recently developed a framework for manifold learning in the

context of reinforcement learning. Manifolds are low-dimensional representations of

objects in high-dimensional spaces, and can be used to compactly represent the state

space of a task. Representation Policy Iteration (Mahadevan, 2005) alternates be-

tween a representation step, in which the manifold representation is improved given

the current policy, and a policy step, in which the policy is improved given the current

representation. An interesting research question is how to combine manifold learning

with hierarchical decomposition and other ways to exploit structure.

It is unlikely that it is possible to develop a general-purpose algorithm that can

approximate solutions to arbitrary sequential decision problems. There will more

likely be a range of algorithms that exploit different types of structure to approximate

solutions. Which algorithm works best in a specific task depends on the types of

structure that are present in the task. Under this scenario, it becomes important to

develop algorithms that quickly determine whether or not a task displays a specific

type of structure. The causal graph that is part of the VISA algorithm is one such

quick way to determine whether a task can easily be decomposed into a hierarchy

of activities. If the causal graph of a task does not contain more than one or two

strongly connected components, the VISA algorithm will not be able to efficiently

decompose the task. Testing a task for structure prior to learning makes is possible

to more carefully select an algorithm that is suitable for approximating a solution to

the task.

108

APPENDIX

PROOF OF THEOREM 5.1.2

Equations (5.7) and (5.8) are consistent and have unique solutions if and only if

the matrix M = E − γ
∑

a∈A ΠaP a(E −B) is invertible, i.e., if det(M) 6= 0. (E −B)

is a diagonal matrix whose elements are in the range [0, 1]. Each element of P a is

in the range [0, 1], and each row of P a sums to 1. Because of the properties of π,

it follows that
∑

a∈A Πa = E and that
∑

a∈A ΠaP a has the same properties as P a.

Then γ
∑

a∈A ΠaP a(E − B) is a matrix such that each element is in the range [0, 1]

and such that the sum of each row is in the range [0, 1]. In other words, M has the

following properties, where n = |S|:

1. for each i = 1, . . . , n: 0 ≤ mii ≤ 1,

2. for each i = 1, . . . , n, j 6= i: −mii ≤ mij ≤ 0,

3. for each i = 1, . . . , n: 0 ≤
∑n

j=1 mij ≤ mii.

Lemma A.0.1 An element mii on the diagonal of M equals 0 if and only if

1. γ = 1,

2. β(si) = 0,

3. for each action a ∈ A such that π(si, a) > 0, P (si | si, a) = 1.

Proof mii = 1− γ
∑

a∈A π(si, a)P (si | si, a)(1− β(si)). The only solution to mii = 0

is γ = 1, β(si) = 0, and P (si | si, a) = 1 for each action a ∈ A such that π(si, a) > 0.

109

An option is proper if and only if there is no set of absorbing states S ′ such that

β(s) = 0 for each state s ∈ S ′. A set of states S ′ is absorbing if and only if the

probability of transitioning from any state in S ′ to any state outside S ′ is 0. A special

case occurs when S ′ contains a single state si such that β(si) = 0 and such that

P (si | si, a) for each action a ∈ A such that π(si, a) > 0. From Lemma A.0.1 it

follows that an element mii on the diagonal of M equals 0 if and only if si is an

absorbing state such that β(si) = 0. Since no such state exists for a proper option

o, we conclude that all elements on the diagonal of M are larger than 0 for a proper

option o. Then it is possible to multiply each row of M by 1/mii to obtain a matrix

A with the following properties:

1. for each i = 1, . . . , n: aii = 1,

2. for each i = 1, . . . , n, j 6= i: −1 ≤ aij ≤ 0,

3. for each i = 1, . . . , n: 0 ≤
∑n

j=1 aij ≤ 1.

Since matrix A is obtained by multiplying each row of M by a scalar, the determinant

of M equals 0 if and only if the determinant of A equals 0. We can write A as

A =



















1 a12 · · · a1n

a21 1 · · · a2n

...
...

. . .
...

an1 an2 · · · 1



















=



















− r1 −

− r2 −

...

− rn −



















,

where ri is the ith row of A. It is possible to eliminate an element aij, j < i, by

subtracting aijrj from row ri:

ri − aijrj =

(

ai1 − aijaj1 · · · aij − aij · 1 · · · 1− aijaji · · · ain − aijajn

)

.

110

Lemma A.0.2 0 ≤ 1− aijaji ≤ 1, and 1− aijaji = 0 if and only if aij = aji = −1.

Proof Follows immediately from the properties of A.

Lemma A.0.3 If 1− aijaji > 0, elimination of aij preserves the properties of A.

Proof Since 1− aijaji > 0, we can multiply ri − aijrj by 1/(1− aijaji):

r̄i =
1

1− aijaji

[ri − aijrj] =

(

ai1−aijaj1

1−aijaji
· · · 0 · · · 1 · · · ain−aijajn

1−aijaji

)

.

It follows immediately that element i of row r̄i equals (1−aijaji)/(1−aijaji) = 1 and

that element j equals (aij − aij · 1)/(1 − aijaji) = 0. For each k = 1, . . . , n, k 6= i, j,

compute bounds on element k of r̄i:

aik − aijajk

1− aijaji

≤
aik − 0

1− aijaji

≤
0− 0

1− aijaji

= 0,

aik − aijajk

1− aijaji

=
1− aijaji + aik − aijajk − (1− aijaji)

1− aijaji

=

=
1 + aik − aij(aji + ajk)

1− aijaji

− 1 ≥

≥
1 + aik + aij

1− aijaji

− 1 ≥
1− 1

1− aijaji

− 1 = −1.

Also compute bounds on the sum of the elements of r̄i:

n
∑

k=1

aik − aijajk

1− aijaji

=

j−1
∑

k=1

aik − aijajk

1− aijaji

+
aij − aij · 1

1− aijaji

+
i−1
∑

k=j+1

aik − aijajk

1− aijaji

+

+
1− aijaji

1− aijaji

+
n
∑

k=i+1

aik − aijajk

1− aijaji

≤

≤ 0 + 0 + 0 + 1 + 0 = 1,
n
∑

k=1

aik − aijajk

1− aijaji

=
1

1− aijaji

[

n
∑

k=1

aik − aij

n
∑

k=1

ajk

]

≥
0 + 0

1− aijaji

= 0.

It follows that row r̄i satisfies the properties of A.

111

From Lemma A.0.2 and Lemma A.0.3 it follows that the properties of A are

preserved under elimination unless the element on the diagonal equals 0. We can

compute the determinant of A by repeatedly performing elimination until A is an

upper triangular matrix. If any element on the diagonal becomes 0 during elimination,

det(A) = 0. Otherwise, the determinant of A equals the inverse of the product of the

coefficients by which we multiplied rows during elimination. Since each coefficient is

larger than 0, it follows that det(A) > 0.

Lemma A.0.4 Let C = {c1, . . . , cm} be a set of m indices, and let S(C, ri) =
∑m

k=1 aick
be the sum of elements of row ri whose column indices are elements of

C. Assume that i ∈ C and that S(C, r̄i) = 0 after elimination of an element aij,

j < i. Then S(C ∪ {j}, ri) = 0 and S(C ∪ {j}, rj) = 0 prior to elimination of aij.

Proof When we eliminate an element aij, j < i, the sum of elements of row r̄i whose

column indices are elements of C is

S(C, r̄i) = S(C, r̄i) + 0 =

=
m
∑

k=1

aick
− aijajck

1− aijaji

+
aij − aij · 1

1− aijaji

=

=
1

1− aijaji

[(

m
∑

k=1

aick
+ aij

)

− aij

(

m
∑

k=1

ajck
+ 1

)]

.

Since i is one of the indices in C, it follows from the properties of A that S(C, r̄i) = 0

if and only if
∑m

k=1 aick
+ aij = 0 and either aij = 0 or

∑m

k=1 ajck
+ 1 = 0. If

aij = 0, there was no reason to perform elimination, so it follows that S(C∪{j}, ri) =
∑m

k=1 aick
+ aij = 0 and that S(C ∪ {j}, rj) =

∑m

k=1 ajck
+ 1 = 0.

Lemma A.0.5 If S(C, rk) = 0 for each row rk, k ∈ C, after elimination of an

element aij, j /∈ C, in row ri, i ∈ C, it follows that S(C ∪ {j}, rk) = 0 for each row

rk, k ∈ C ∪ {j} prior to elimination of aij.

112

Proof If S(C, ri) = 0 following elimination of aij, it follows from Lemma A.0.4 that

S(C ∪ {j}, ri) = 0 and that S(C ∪ {j}, rj) = 0 prior to elimination of aij. For k ∈

C −{i}, S(C ∪{j}, rk) = S(C, rk) + akj = akj. Since akj ≤ 0 and S(C ∪{j}, rk) ≥ 0,

it follows that S(C ∪ {j}, rk) = akj = 0.

Lemma A.0.6 If det(A) = 0, it is possible to rearrange the rows and columns of A

to obtain






X 0

Y Z






,

where X is a k × k matrix such that for each i = 1, . . . , k,
∑k

j=1 xij = 0.

Proof If det(A) = 0, there exists i, j < i such that aii becomes 0 during elimination

of aij. From Lemma A.0.2 it follows that aij = aji = −1 prior to elimination of aij,

so S({i, j}, ri) = aij + aii = −1 + 1 = 0 and S({i, j}, rj) = ajj + aji = 1 − 1 = 0.

Let C = {i, j}. Recursively find each index l such that elimination of element akl

occured prior to this round in row rk, k ∈ C. Then it follows from Lemma A.0.5 that

S(C ∪ {l}, rk) = 0 for each k ∈ C ∪ {l} prior to elimination of akl. Add each such

index l to C. Prior to elimination of any element, it is possible to rearrange the rows

and columns of A to obtain

































a′
11 · · · a′

1m 0 · · · 0

...
. . .

...
...

. . .
...

a′
m1 · · · a′

mm 0 · · · 0

a′
(m+1)1 · · · a′

(m+1)m a′
(m+1)(m+1) · · · a′

(m+1)n

...
. . .

...
...

. . .
...

a′
n1 · · · a′

nm a′
n(m+1) · · · a′

nn

































,

where the first m rows and columns are those whose indices are elements of C. Since

S(C, rk) = 0 for each row rk, k ∈ C, it follows that the sum of row rk equals 0 and

that for each l /∈ C, element akl equals 0.

113

From the definition of M it follows that it is only possible to rearrange the rows

and columns to obtain






X 0

Y Z






,

such that the sum of each row of X equals 0, if there is an absorbing set of states

S ′ such that β(s) = 0 for each state s ∈ S ′ and if γ = 1. For a proper option o, it

is not possible to rearrange M that way. Since the sum of one row of M equals 0 if

and only if the sum of the same row of A equals 0, it is not possible to rearrange A

that way either. It follows from the contrapositive of Lemma A.0.6 that det(A) 6= 0,

which also means that det(M) 6= 0. This concludes the proof of Theorem 5.1.2.

114

BIBLIOGRAPHY

Andre, D. and Russell, S. (2002). State Abstraction for Programmable Reinforcement
Learning Agents. Proceedings of the National Conference on Artificial Intelligence,
18:119–125.

Åström, K. (1965). Optimal control of Markov decision processes with incomplete
state estimation. Journal of Mathematical Analysis and Applications, 10:174–205.

Barto, A., Singh, S., and Chentanez, N. (2004). Intrinsically Motivated Learning of
Hierarchical Collections of Skills. Proceedings of the International Conference on
Development and Learning, 3:112–119.

Bellman, R. (1956). A problem in the sequential design of experiments. Sankhya,
16:221–229.

Bellman, R. (1957). A Markov decision process. Journal of Mathematical Mechanics,
6:679–684.

Boutilier, C. and Dearden, R. (1994). Using Abstractions for Decision-Theoretic Plan-
ning with Time Constraints. Proceedings of the National Conference on Artificial
Intelligence, 12:1016–1022.

Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Exploiting structure in pol-
icy construction. Proceedings of the International Joint Conference on Artificial
Intelligence, 14:1104–1113.

Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic Dynamic Pro-
gramming with Factored Representations. Artificial Intelligence, 121(1):49–107.

Bradtke, S. and Duff, M. (1995). Reinforcement learning methods for continuous-time
Markov decision problems. Advances in Neural Information Processing Systems,
7:393–400.

Broman, K. (1997). Identifying quantitative trait loci in experimental crosses. Ph.D
Thesis, University of California, Berkeley, USA.

Bulitko, V., Sturtevant, N., and Kazakevich, M. (2005). Speeding Up Learning in
Real-time Search via Automatic State Abstraction. Proceedings of the National
Conference on Artificial Intelligence, 20.

Buntine, W. (1991). Theory refinement on Bayesian networks. Proceedings of Uncer-
tainty in Artificial Intelligence, 7:52–60.

115

Chapman, D. and Kaelbling, L. (1991). Input generalization in delayed reinforce-
ment learning: An algorithm and performance comparisons. Proceedings of the
International Joint Conference on Artificial Intelligence, 12:726–731.

Chickering, D., Geiger, D., and Heckerman, D. (1995). Learning Bayesian networks:
search methods and experimental results. Proceedings of Artificial Intelligence and
Statistics, 5:112–128.

Cockett, J. (1985). Decision expression optimization. Technical report, University of
Tennessee, Knoxville, USA.

Cooper, G. and Herskovits, E. (1992). A Bayesian method for the induction of prob-
abilistic networks from data. Machine Learning, 9:309–347.

Crites, R. and Barto, A. (1996). Improving elevator performance using reinforcement
learning. Advances in Neural Information Processing Systems, 8:1017–1023.

Dean, T. and Givan, R. (1997). Model minimization in Markov decision processes.
Proceedings of the National Conference on Artificial Intelligence, 14:106–111.

Dean, T. and Kanazawa, K. (1989). A model for reasoning about persistence and
causation. Computational Intelligence, 5(3):142–150.

Dearden, R., Friedman, N., and Andre, D. (1999). Model based Bayesian Exploration.
Proceedings of Uncertainty in Artificial Intelligence, 15:150–159.

Dietterich, T. (2000a). Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research, 13:227–303.

Dietterich, T. (2000b). State Abstraction in MAXQ Hierarchical Reinforcement
Learning. Advances in Neural Information Processing Systems, 12:994–1000.

Digney, B. (1996). Emergent hierarchical control structures: Learning reac-
tive/hierarchical relationships in reinforcement environments. From animals to
animats, 4:363–372.

Dz̆eroski, S., de Raedt, L., and Blockeel, H. (1998). Relational reinforcement learning.
Proceedings of the International Conference on Machine Learning, 15:136–143.

Evgeniou, T., Pontil, M., and Poggio, T. (2000). Regularization Networks and Sup-
port Vector Machines. Advances in Computational Mathematics, 13(1):1–50.

Feng, Z., Hansen, E., and Zilberstein, S. (2003). Symbolic generalization for on-line
planning. Proceedings of Uncertainty in Artificial Intelligence, 19:209–216.

Fikes, R. and Nilsson, N. (1971). Strips: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence, 2:189–208.

116

Friedman, N., Murphy, K., and Russell, S. (1998). Learning the structure of dynamic
probabilistic networks. Proceedings of Uncertainty in Artificial Intelligence, 14:139–
147.

Ghavamzadeh, M. and Mahadevan, S. (2001). Continuous-Time Hierarchical Re-
inforcement Learning. Proceedings of the International Conference on Machine
Learning, 18:186–193.

Guestrin, C., Koller, D., and Parr, R. (2001). Max-norm Projections for Factored
MDPs. International Joint Conference on Artificial Intelligence, 17:673–680.

Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning Bayesian networks:
The combination of knowledge and statistical data. Machine Learning, 20:197–243.

Helmert, M. (2004). A planning heuristic based on causal graph analysis. Proceedings
of the International Conference on Automated Planning and Scheduling, 14:161–
170.

Hengst, B. (2002). Discovering Hierarchy in Reinforcement Learning with HEXQ.
Proceedings of the International Conference on Machine Learning, 19:243–250.

Hernandez-Gardiol, N. and Mahadevan, S. (2001). Hierarchical Memory-Based Rein-
forcement Learning. Advances in Neural Information Processing Systems, 13:1047–
1053.

Hoey, J., St-Aubin, R., Hu, A., and Boutilier, C. (1999). Spudd: Stochastic Plan-
ning using Decision Diagrams. Proceedings of Uncertainty in Artificial Intelligence,
15:279–288.

Howard, R. (1960). Dynamic Programming and Markov Processes. MIT Press, Cam-
bridge, USA.

Jonsson, A. and Barto, A. (2001). Automated State Abstractions for Options Us-
ing the U-Tree Algorithm. Advances in Neural Information Processing Systems,
13:1054–1060.

Jonsson, A. and Barto, A. (2005). A Causal Approach to Hierarchical Decomposi-
tion of Factored MDPs. Proceedings of the International Conference on Machine
Learning, 22.

Kaelbling, L. (1993). Learning in embedded systems. MIT Press, Cambridge, USA.

Kearns, M. and Koller, D. (1999). Efficient Reinforcement Learning in Factored
MDPs. Proceedings of the International Joint Conference on Artificial Intelligence,
16:740–747.

MacKay, D. (1992). Bayesian Interpolation. Neural Computation, 4(3):415–447.

Mahadevan, S. (2005). Representation Policy Iteration. Proceedings of Uncertainty
in Artificial Intelligence, 21.

117

Mannor, S., Menache, I., Hoze, A., and Klein, U. (2004). Dynamic abstraction in
reinforcement learning via clustering. Proceedings of the International Conference
on Machine Learning, 21:560–567.

McCallum, A. (1995). Reinforcement Learning with Selective Perception and Hidden
State. Ph.D. Thesis, Computer Science Department, University of Rochester, USA.

McGovern, A. and Barto, A. (2001). Automatic Discovery of Subgoals in Reinforce-
ment Learning using Diverse Density. Proceedings of the International Conference
on Machine Learning, 18:361–368.

Menache, I., Mannor, S., and Shimkin, N. (2002). Q-Cut – Dynamic Discovery of
Sub-Goals in Reinforcement Learning. Proceedings of the European Conference on
Machine Learning, 13:295–306.

Moore, A. and Atkeson, C. (1995). The Parti-game Algorithm for Variable Resolu-
tion Reinforcement Learning in Multidimensional State-spaces. Machine Learning,
21:199–233.

Munos, R. and Moore, A. (1999). Variable resolution discretization for high-accuracy
solutions of optimal control problems. Proceedings of the International Joint Con-
ference on Artificial Intelligence, 16:1348–1355.

Murphy, K. (2001). Active Learning of Causal Bayes Net Structure. Technical Report,
University of California, Berkeley, USA.

Parr, R. and Russell, S. (1998). Reinforcement Learning with Hierarchies of Machines.
Advances in Neural Information Processing Systems, 10:1043–1049.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, USA.

Pickett, M. and Barto, A. (2002). Policyblocks: An Algorithm for Creating Useful
Macro-Actions in Reinforcement Learning. Proceedings of the International Con-
ference on Machine Learning, 19:506–513.

Poggio, T. and Girosi, F. (1990). Regularization Algorithms for Learning that are
Equivalent to Multilayer Networks. Science, 247:978–982.

Puterman, M. (1990). Markov decision processes. Handbooks in Operations Research
and Management Science, 2:331–434.

Puterman, M. (1994). Markov Decision Processes. Wiley Interscience, New York,
USA.

Puterman, M. and Brumelle, S. (1979). On the convergence of policy iteration in
stationary dynamic programming. Mathematics of Operations Research, 4:60–69.

118

Ravindran, B. (2004). An Algebraic Approach to Abstraction in Reinforcement Learn-
ing. Ph.D. Thesis, Department of Computer Science, University of Massachusetts,
Amherst, USA.

Ravindran, B. and Barto, A. (2003). Relativized Options: Choosing the Right
Transformation. Proceedings of the International Conference on Machine Learning,
18:1011–1016.

Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics,
6:461–464.

Şimşek, Ö. and Barto, A. (2004). Using relative novelty to identify useful temporal
abstractions in reinforcement learning. Proceedings of the International Conference
on Machine Learning, 21:751–758.

Şimşek, Ö., Wolfe, A., and Barto, A. (2005). Identifying useful subgoals in rein-
forcement learning by local graph partitioning. Proceedings of the International
Conference on Machine Learning, 22.

Smith, J. (1971). Markov Decisions on a Partitioned State Space. IEEE Transactions
on Systems, Man, and Cybernetics, 1:55–60.

Steck, H. and Jaakkola, T. (2002). Unsupervised Active Learning in Large Domains.
Proceedings of Uncertainty in Artificial Intelligence, 18:469–476.

Strehl, A. and Littman, M. (2004). An Empirical Evaluation of Interval Estimation
for Markov Decision Processes. Proceedings of the International Conference on
Tools with Artificial Intelligence, 16:128–135.

Sutton, R. (1988). Learning to predict by the method of temporal differences. Machine
Learning, 3:9–44.

Sutton, R. (1996). Generalization in reinforcement learning: Successful examples
using sparse coarse coding. Advances in Neural Information Processing Systems,
8:1038–1044.

Sutton, R. and Barto, A. (1998). Reinforcement Learning: An Introduction. MIT
Press, Cambridge, USA.

Sutton, R., Precup, D., and Singh, S. (1998). Intra-Option Learning about Tempo-
rally Abstract Actions. Proceedings of the International Conference on Machine
Learning, 15:556–564.

Sutton, R., Precup, D., and Singh, S. (1999). Between MDPs and Semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelli-
gence, 112:181–211.

Tesauro, G. (1994). Td-Gammon, a self-teaching backgammon program achieves
master-level play. Neural Computation, 6:215–219.

119

Thrun, S. and Schwartz, A. (1996). Finding structure in reinforcement learning.
Advances in Neural Information Processing Systems, 8:385–392.

Tong, S. and Koller, D. (2001). Active learning for parameter estimation in Bayesian
networks. Advances in Neural Information Processing Systems, 13:647–653.

Watkins, C. (1989). Learning from delayed rewards. Ph.D. Thesis, Psychology De-
partment, University of Cambridge, UK.

Watkins, C. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279–292.

Wiering, M. (1999). Explorations in efficient reinforcement learning. Ph.D Thesis,
University of Amsterdam, Netherlands.

Zhang, W. and Dietterich, T. (1995). A Reinforcement Learning Approach to Job-
shop Scheduling. Proceedings of the International Joint Conference on Artificial
Intelligence, 14:1114–1120.

120

