
HIERARCHICAL REINFORCEMENT LEARNING IN
CONTINUOUS STATE AND MULTI-AGENT ENVIRONMENTS

A Dissertation Presented

by

MOHAMMAD GHAVAMZADEH

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2005

Computer Science

c© Copyright by Mohammad Ghavamzadeh 2005

All Rights Reserved

HIERARCHICAL REINFORCEMENT LEARNING IN
CONTINUOUS STATE AND MULTI-AGENT ENVIRONMENTS

A Dissertation Presented

by

MOHAMMAD GHAVAMZADEH

Approved as to style and content by:

Sridhar Mahadevan, Chair

Andrew G. Barto, Member

Victor R. Lesser, Member

Weibo Gong, Member

W. Bruce Croft, Department Chair
Computer Science

To my parents.

ACKNOWLEDGMENTS

I must begin by thanking my mother and then proceed to ask her to forgive me for yet

another failing: I am absolutely incapable of expressing the depth of my gratitude for her

endless love, support, and encouragement.

I am deeply grateful to my advisor Sridhar Mahadevan, whose guidance, support, and

patience were instrumental in bringing this work to fruition. Sridhar gave me tremendous

freedom to explore and try new ideas, which has had an essential role in my growth as a

researcher. Thank you Sridhar.

During my graduate studies at UMass I have had the opportunity to collaborate with

Andy Barto. I have found Andy an outstanding and visionary researcher, and a wonderful

human being. It was a great honor and a real pleasure for me to have him as a member of

my thesis committee.

I am also indebted to the other members of my committee for their patience in read-

ing drafts of my thesis, their insightful comments, and their stimulating questions during

my defense. I thank Victor Lesser for his constant support, and for helping me better

understand research directions in multi-agent systems; and Weibo Gong for inspiring con-

versations.

I must thank Doina Precup heartily for her unwavering support while a long visa delay

had interrupted my research and almost every other aspect of my life. It is amazing how

one’s career and dignity can fall at the mercy of such a seemingly banal uncertainty as a

visa delay. I am indebted for her support at such a time: she made every effort to make me

feel part of the community at the computer science department at McGill university.

Many others have shared their insights and contributed to the development of the ideas

in the thesis. I especially thank Balaraman Ravindran and my old buddy Khashayar Rohan-

v

imanesh for many useful conversations and more important for their precious friendship.

I thank Andy Fagg and Mike Rosenstein for exposing me to a wide variety of topics in

continuous state and action reinforcement learning. I never forget Andy’s friendship, his

down-to-earth manner, and his tasty and fresh salsas. I thank Mike who made organizing a

workshop at AAAI-2004 a joyful and educational experience for me.

I want to thank Caro Locus and Ali M. Eydgahi, my M.S. and B.S. advisors from

University of Tehran, Iran. They taught me how to be a researcher, how to better express

my ideas, and helped me in writing my first research papers. I also want to thank Abdol

Esfahanian without whom it would not have been possible for me to pursue my education

in the United States of America.

I would like to thank all the members of the Autonomous Learning Laboratory at

UMass, past and present, for their friendship, for their constant support and encourage-

ment, for giving useful feedback during my practice talks and lab-meeting presentations,

and finally for taking care of my cubicle during my unwanted one-year absence. Thank you

Colin Barringer, Jad Davis, Andy Fagg, Jeffrey Johns, Anders Jonsson, George Konidaris,

Victoria Manfredi, Amy McGovern, Sarah Osentoski, Ted Perkins, Marc Pickett, Balara-

man Ravindran, Khashayar Rohanimanesh, Mike Rosenstein, Suchi Saria, Ashvin Shah,

Özgür Şimşek, Andrew Stout, Chris Vigorito, and Pippin Wolfe for making our lab such an

excellent and enjoyable environment for research.

I am also grateful to the members of our small Autonomous Agents Laboratory at

Michigan State University, with whom I learned about new research directions, open prob-

lems, and solution techniques in Artificial Intelligence, Machine Learning, and Reinforce-

ment Learning: Natalia Hernandez Gardiol, Rajbala Makar, Silviu Minut, Khashayar Ro-

hanimanesh, and Georgios Theocharous.

I am proud to belong to an intellectual community that treats hopeful, young gradu-

ate students with the same respect as senior researchers. Some of the members of this

community who have been particularly helpful and kind to me, and their useful comments

vi

contributed to the quality of this document are David Andre, Bernhard Hengst, Shie Man-

nor, Doina Precup, Richard Sutton, and Prasad Tadepalli.

The material in this work is based upon work carried out in the Autonomous Agents

Laboratory in the Department of Computer Science and Engineering at Michigan State

University, under the DARPA contract DAANO2-98-C-4025, and the Autonomous Learn-

ing Laboratory in the Department of Computer Science at University of Massachusetts

Amherst, under the NASA contract NAg-1445 #1, and the NSF grant ECS-0218125.

vii

ABSTRACT

HIERARCHICAL REINFORCEMENT LEARNING IN
CONTINUOUS STATE AND MULTI-AGENT ENVIRONMENTS

SEPTEMBER 2005

MOHAMMAD GHAVAMZADEH

B.Sc., UNIVERSITY OF TEHRAN, IRAN

M.Sc., UNIVERSITY OF TEHRAN, IRAN

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sridhar Mahadevan

This dissertation investigates the use of hierarchy and abstraction as a means of solving

complex sequential decision making problems such as those with continuous state and/or

continuous action spaces, and domains with multiple cooperative agents. This thesis de-

velops several novel extensions to hierarchical reinforcement learning (HRL), and designs

algorithms that are appropriate for such problems.

It has been shown that the average reward optimality criterion is more natural than the

more commonly used discounted criterion for continuing tasks. This thesis investigates two

formulations of HRL based on the average reward semi-Markov decision process (SMDP)

model, both for discrete-time and continuous-time. These formulations correspond to two

notions of optimality that have been explored in previous work on HRL: hierarchical op-

timality and recursive optimality. Novel discrete-time and continuous-time algorithms,

viii

termed hierarchically optimal average reward RL (HAR) and recursively optimal av-

erage reward RL (RAR) are presented, which learn to find hierarchically and recursively

optimal average reward policies. Two automated guided vehicle (AGV) scheduling prob-

lems are used as experimental testbeds to empirically study the performance of the pro-

posed algorithms.

Policy gradient reinforcement learning (PGRL) methods have several advantages over

the more traditional value function RL algorithms in solving problems with continuous

state spaces. However, they suffer from slow convergence. This thesis defines a family

of hierarchical policy gradient RL (HPGRL) algorithms for scaling PGRL methods to

high-dimensional domains. In HPGRL, each subtask is defined as a PGRL problem whose

solution involves computing a locally optimal policy. Subtasks are formulated in terms of

a parameterized family of policies, a performance function, a method to estimate the gra-

dient of the performance function, and a routine to update the policy parameters using this

gradient. The usually slow convergence of HPGRL algorithms is improved by formulating

high-level subtasks, which usually require low-resolution discretization of the state space

and have finite action spaces, as value function RL problems, and lower-level subtasks,

which usually require high-resolution discretization of the state space and may have infi-

nite action spaces, as PGRL problems. This family of algorithms is termed hierarchical

hybrid algorithms. The effectiveness of the proposed algorithms is demonstrated using a

taxi-fuel problem as well as a more complex continuous state and action ship steering task.

This thesis also examines the use of HRL to accelerate policy learning in coopera-

tive multi-agent tasks. The use of hierarchy speeds up learning in multi-agent domains

by making it possible to learn coordination skills at the level of subtasks instead of prim-

itive actions. Subtask-level coordination allows for increased cooperation skills as agents

do not get confused by low-level details. A framework for hierarchical multi-agent RL

is developed and an algorithm called Cooperative HRL is presented that solves coopera-

tive multi-agent problems more efficiently. This algorithm is empirically evaluated using a

ix

large four-agent AGV scheduling task. The framework and algorithm is extended to include

communication decisions. The goal is for agents to learn both action and communication

policies that together optimize the task given the communication cost. The extended al-

gorithm, called COM-Cooperative HRL, is a hierarchical multi-agent RL algorithm with

communication decisions. The efficacy of this algorithm as well as the relation between

communication cost and the learned communication policy is demonstrated using a multi-

agent taxi problem.

Together, the methods and algorithms developed in this dissertation use prior knowl-

edge in a principled way, and extend HRL to solving complex sequential decision making

problems such as those with continuous state and/or continuous action spaces and domains

with multiple cooperative agents.

x

CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . viii

LIST OF TABLES . xiv

LIST OF FIGURES . xv

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 2
1.2 Our Approach . 6
1.3 Contributions . 9
1.4 Outline . 11

2. BACKGROUND AND NOTATION . 14

2.1 Reinforcement Learning . 14
2.2 Markov Decision Processes . 15

2.2.1 Undiscounted Reward Markov Decision Processes 16
2.2.2 Discounted Reward Markov Decision Processes 17
2.2.3 Average Reward Markov Decision Processes . 19
2.2.4 Solution Methods for MDPs . 22

2.2.4.1 Value Function Solution Methods for MDPs 22
2.2.4.2 Policy Search Solution Methods for MDPs 26

2.3 Semi-Markov Decision Processes . 28

2.3.1 Discounted Reward Semi-Markov Decision Processes 29
2.3.2 Average Reward Semi-Markov Decision Processes 30
2.3.3 Solution Methods for SMDPs . 31

xi

2.4 Hierarchy and Temporal Abstraction . 32

2.4.1 Temporal Abstraction in Classical AI . 32
2.4.2 Temporal Abstraction in Control . 33
2.4.3 Temporal Abstraction in Reinforcement Learning 34

2.5 Multi-Agent Reinforcement Learning . 38

3. A FRAMEWORK FOR HIERARCHICAL REINFORCEMENT
LEARNING . 42

3.1 Motivating Example . 42
3.2 Policy Execution . 46
3.3 Local versus Global Optimality . 47
3.4 Value Function Definitions . 48
3.5 Value Function Decomposition . 49

4. HIERARCHICAL AVERAGE REWARD REINFORCEMENT
LEARNING . 54

4.1 Hierarchically Optimal Average Reward RL Algorithm 55
4.2 Recursively Optimal Average Reward RL . 62

4.2.1 Root Task Formulation . 64
4.2.2 Subtask Formulation . 65
4.2.3 Recursively Optimal Average Reward RL Algorithm 68
4.2.4 Optimality of the RAR Algorithm . 73

4.3 Experimental Results . 74

4.3.1 A Small AGV Scheduling Problem . 75
4.3.2 AGV Scheduling Problem (Discrete and Continuous Time

Models) . 76

4.4 Summary and Future Work . 83

5. HIERARCHICAL POLICY GRADIENT REINFORCEMENT
LEARNING . 84

5.1 Policy Gradient Formulation . 85

5.1.1 Policy Formulation . 85
5.1.2 Performance Measure Definition and Optimization 88

5.2 Hierarchical Policy Gradient Algorithms . 91

5.2.1 Taxi-Fuel Problem . 92

xii

5.3 Hierarchical Hybrid Algorithms . 94
5.4 Summary and Future Work . 104

6. HIERARCHICAL MULTI-AGENT REINFORCEMENT
LEARNING . 105

6.1 Multi-Agent SMDP Model . 107
6.2 A Hierarchical Multi-Agent Reinforcement Learning Framework 110
6.3 A Hierarchical Multi-Agent Reinforcement Learning Algorithm 114
6.4 Experimental Results for the Cooperative HRL Algorithm 116
6.5 Hierarchical Multi-Agent RL with Communication Decisions 124

6.5.1 Communication Among Agents . 124
6.5.2 A Hierarchical Multi-Agent RL Algorithm with Communication

Decisions . 125

6.6 Experimental Results for the COM-Cooperative HRL Algorithm 129
6.7 Summary and Future Work . 135

7. CONCLUSIONS AND FUTURE WORK . 138

7.1 Summary . 138
7.2 Future Work . 141
7.3 Closing Remarks . 143

APPENDIX: INDEX OF SYMBOLS . 144

BIBLIOGRAPHY . 147

xiii

LIST OF TABLES

Table Page

4.1 Parameters of the Discrete-Time Model . 79

4.2 Parameters of the Continuous-Time Model . 80

5.1 State and action variables for the ship steering task. 96

6.1 Model parameters for the multi-agent AGV scheduling task. 120

xiv

LIST OF FIGURES

Figure Page

1.1 An AGV scheduling domain with four machines M1 to M4. AGVs are
responsible to carry raw materials and finished parts between the
machines and the warehouse. 4

1.2 A hierarchical task decomposition for an AGV scheduling problem. 5

2.1 An MDP on which discounted and undiscounted measures may
disagree. 20

3.1 A robot trash collection task and its associated task graph. 44

3.2 This figure shows the two-part decomposition for V̂ (i, s), the projected
value function of subtask Mi for the shaded state s. Each circle is a
state of the SMDP visited by the agent. Subtask Mi is initiated at state
sI and terminates at state sT . The projected value function V̂ (i, s) is
broken into two parts: Part 1) the projected value function of subtask
Ma for state s, and Part 2) the completion function, the expected
discounted cumulative reward of completing subtask Mi after
executing subtask Ma in state s. 52

3.3 This figure shows the three-part decomposition for V (i, x), the
hierarchical value function of subtask Mi for the shaded state
x = (ω, s). Each circle is a state of the SMDP visited by the agent.
Subtask Mi is initiated at state xI and terminates at state xT . The
hierarchical value function V (i, x) is broken into three parts: Part 1)
the projected value function of subtask Ma for state s, Part 2) the
completion function, the expected discounted cumulative reward of
completing subtask Mi after executing subtask Ma in state s, and Part
3) the sum of all rewards after termination of subtask Mi. 53

4.1 This figure shows how each subtask in a hierarchical decomposition of a
continuing problem can be modeled as a continuing task. 67

4.2 A small AGV scheduling task and its associated task graph. 76

xv

4.3 This plot shows that HDR and HAR algorithms (the two curves at the top)
learn the hierarchically optimal policy while RAR, MAXQ-Q, and
HH-Learning (the three curves at the bottom) only find the recursively
optimal policy for the small AGV scheduling task. 77

4.4 An AGV scheduling task. An AGV agent (not shown) carries raw
materials and finished parts between machines and warehouse. 78

4.5 Task graph for the AGV scheduling task. 78

4.6 This plot shows that the discrete-time HAR algorithm performs better than
the discounted reward HDR and RAR algorithms on the AGV
scheduling task. It also demonstrates the faster convergence of the
HAR algorithm comparing to RVI Q-learning, the non-hierarchical
average reward algorithm. 81

4.7 This plot shows that the continuous-time HAR converges to the same
performance as the discounted reward HDR, and both outperform the
recursively optimal average reward (RAR) algorithm on the AGV
scheduling task. It also demonstrates the faster convergence of the
HAR algorithm comparing to RVI Q-learning, the flat average reward
algorithm. 82

5.1 This figure shows how we model a subtask as an episodic problem under
Assumption 5.2. 87

5.2 The taxi-fuel problem. 93

5.3 This figure compares the performance of the HPGRL algorithm proposed
in this section with MAXQ-Q and flat Q-learning algorithms on the
taxi-fuel problem. 94

5.4 The ship steering task. 95

5.5 This figure shows two simplified versions of the ship steering task used as
low-level subtasks in the hierarchical decomposition of the ship
steering problem. 97

5.6 A task graph for the ship steering problem. 98

5.7 This figure shows the performance of hierarchical hybrid, flat PGRL and
actor-critic algorithms in terms of the number of successful trials in
1000 episodes. 100

xvi

5.8 This figure shows the performance of the hierarchical hybrid algorithm in
terms of the number of low-level subtask calls. 101

5.9 This figure shows the performance of hierarchical hybrid, flat PGRL and
actor-critic algorithms in terms of the number of steps to pass through
the gate. 102

5.10 This figure shows the performance of the diagonal subtask in terms of the
number of successful trials in 1000 episodes. 102

5.11 This figure shows the performance of the horizontal/vertical subtask in
terms of the number of successful trials in 1000 episodes. 103

5.12 This figure shows the learned policy for two initial configurations of the
ship. 103

6.1 A multi-agent trash collection task and its associated task graph. 107

6.2 A multi-agent AGV scheduling domain. There are four AGVs (not shown)
which carry raw materials and finished parts between machines and
the warehouse. 118

6.3 Task graph for the AGV scheduling task. 119

6.4 This figure shows that the Cooperative HRL algorithm outperforms both
the selfish multi-agent HRL and the single-agent HRL algorithms
when the AGV travel time and load/unload time are very much less
compared to the average assembly time. 121

6.5 This figure compares the Cooperative HRL algorithm with the selfish
multi-agent HRL, when the AGV travel time and load/unload time are

1
10th of the average assembly time. 121

6.6 A flat Q-Learner learns the AGV domain extremely slowly showing the
need for using a hierarchical task structure. 122

6.7 This plot shows that the Cooperative HRL algorithm outperforms three
well-known widely used industrial heuristics for AGV
scheduling. 122

6.8 This plot compares the performance of the Cooperative HRL algorithm
with cooperation at the top level of the hierarchy vs. cooperation at the
top and third levels of the hierarchy. 123

xvii

6.9 Task graph of the trash collection problem with communication
actions. 127

6.10 A multi-agent taxi domain and its associated task graph. 130

6.11 This figure shows that the Cooperative HRL and the COM-Cooperative
HRL with ComCost = 0 have better throughput than the selfish
multi-agent HRL and the single-agent HRL. 131

6.12 This figure shows that the average waiting time per passenger in the
Cooperative HRL and the COM-Cooperative HRL with ComCost = 0
is less than the selfish multi-agent HRL and the single-agent
HRL. 132

6.13 This figure compares the average waiting time per passenger for the selfish
multi-agent HRL and the COM-Cooperative HRL with ComCost = 0
for three different passenger arrival rates (5, 10, and 20). It shows that
coordination among taxis becomes more crucial as the passenger
arrival rate becomes smaller. 133

6.14 This figure shows that as communication cost increases, the throughput
(top) and the average waiting time per passenger (bottom) of the
COM-Cooperative HRL become closer to the selfish multi-agent HRL.
It indicates that agents learn to be selfish when communication is
expensive. 134

xviii

CHAPTER 1

INTRODUCTION

Sequential decision making under uncertainty is one of the fundamental problems in

Artificial Intelligence (AI). Many sequential decision making problems can be modeled

using the Markov decision process (MDP) formalism. An MDP (Howard, 1960; Puterman,

1994) models a system that we are interested in controlling as being in some state at each

time step. As a result of actions the agent selects, the system moves through some sequence

of states and receives a sequence of rewards. The goal is to select actions to maximize some

measure of long-term reward.

Reinforcement learning (RL) is a machine learning framework for solving problems

posed in the MDP formalism. Despite its numerous successes in a number of different

domains, including backgammon (Tesauro, 1994), job-shop scheduling (Zhang and Diet-

terich, 1995), dynamic channel allocation (Singh and Bertsekas, 1996), elevator scheduling

(Crites and Barto, 1998), and helicopter flight control (Ng et al., 2004), current RL meth-

ods do not scale well to high dimensional domains — they can be slow to converge and

require too many training samples to be practical for many real-world problems. This issue

is known as the curse of dimensionality: the exponential growth of the number of param-

eters to be learned with the size of any compact encoding of system state (Bellman, 1957).

Recent attempts to combat the curse of dimensionality have turned to principled ways of

exploiting abstraction in RL. This leads naturally to hierarchical control architectures and

associated learning algorithms.

Although hierarchical reinforcement learning (HRL) approaches exploit the power of

abstraction and scale better than flat RL methods to high dimensional domains, they still

1

suffer from the main limitation of flat RL algorithms: the curse of dimensionality. More-

over, HRL methods have so far only been studied in a narrow context: they have been in-

vestigated for the discrete-time discounted reward SMDP model; they have all been value

function RL methods; and, they have only been studied in single-agent domains.

This dissertation expands the context and scope of HRL. The objective here is to de-

velop several novel extensions to existing HRL frameworks and design algorithms that are

appropriate for solving complex sequential decision making problems such as those with

continuous state and/or continuous action spaces, and domains with multiple cooperative

agents.

1.1 Motivation

Many problems faced by animals and AI systems can be modeled as sequential decision

making in uncertain dynamic environments. For example, a complex manufacturing sys-

tem, e.g., a system for manufacturing automobile or personal computers, involves optimiz-

ing hundreds or even thousands of processes (sub-systems) such as inventory, engineering

design, assembly, and marketing.

These problems involve decision makers, or agents, selecting sequences of actions in

order to achieve multiple long-term goals. Moreover, uncertainty is ever present in these

domains, both in the effects of actions, and in the evolution of the actual system. The un-

certain and ever changing nature of these problems makes it difficult to plan ahead of time.

Hence, these tasks require control rules, which are dependent on the state variables of the

system. In recent years, advances in technology have led to increased interest in automated

methods for solving these tasks. Commercial tools are now available for problems ranging

from factory optimization to medical diagnosis. Unfortunately, these problems tend to be

very complex, and most of the existing automated techniques either build on heuristics,

or do not fully address the long-term or the uncertain aspects of these sequential decision

making tasks.

2

Fortunately, although such problems are very complex, they are often hierarchically

decomposable into a set of simpler subtasks. As argued by Simon (1981) in “Architecture

of Complexity,” many complex systems have a decomposable hierarchical structure, with

the subsystems interacting only weakly between themselves. Humans exploit this decom-

posable hierarchical structure in solving such complex and large-scale problems.

An example will help illustrate the basic concepts. This example has been chosen be-

cause, it involves an interesting and challenging manufacturing system, and furthermore

several versions of this example have been used in the experiments of this dissertation.

Figure 1.1 shows an automated guided vehicle (AGV) scheduling task. AGVs are used

in flexible manufacturing systems (FMSs) for material handling (Askin and Standridge,

1993). They are typically used to pick up parts from one location and drop them off at an-

other location for further processing. Locations correspond to workstations (M1 to M4) or

storage locations (load and unload stations). Loads that are released at the drop-off points

(D1 to D4) of workstations wait at their pick-up points (P1 to P4) after the processing

is over, so the AGV is able to take them to the warehouse or some other locations. The

pick-up points (P1 to P4) are the machine or workstations’ output buffers. Any FMS us-

ing AGVs faces the problem of optimally scheduling the paths of the AGVs in the system

(Klein and Kim, 1996). For example, a move request occurs when a part finishes at a work-

station. If more than one vehicle is empty, the vehicle which would service this request

needs to be selected. Also, when a vehicle becomes available, and multiple move requests

are queued, a decision needs to be made as to which request should be serviced by that

vehicle. These schedules obey a set of constraints that reflect the temporal relationships

between activities and the capacity limitations of a set of shared resources. The system per-

formance is generally measured in terms of throughput, on-line inventory, and AGV travel

time, but throughput is by far the most important factor. Throughput is measured in terms

of the number of finished assemblies deposited at the unloading deck per unit time. Since

this problem is very complex, various heuristics and their combinations are generally used

3

to schedule AGVs (Klein and Kim, 1996). However, the heuristics perform poorly when

the constraints on the movement of the AGVs are reduced.

Unload

40m20m

40m40m

Parts

Warehouse 60m

P4P3

D2

D3

60m

60m
Load

20m

P1P2

M: Machine
D: Drop off Station
P: Pick up Station

Assemblies

D1

D4

M2 M1

M4M3

Figure 1.1. An AGV scheduling domain with four machines M1 to M4. AGVs are respon-
sible to carry raw materials and finished parts between the machines and the warehouse.

In order for an AGV to optimize this task, it must learn all its sub-tasks such as carry

parts from load station to machines, deliver assemblies from machines to unload station at

the warehouse, navigate to load and unload stations, plus it should learn the order to execute

these sub-tasks. The state space of this task consists of AGV’s status and location, status of

input and output buffers of workstations, and the availability of parts in warehouse, which

can become enormous. It makes it very difficult for flat (non-hierarchical) RL methods to

be used in this problem as we will show in Chapters 4 and 6.

However, the AGV scheduling task described above is naturally decomposed to a set

of non-primitive subtasks like deliver material to workstations (DM1 to DM4), deliver

assembly from workstations to warehouse (DA1 to DA4), navigate to the load station

at the warehouse (NavLoad), navigate to the drop-off points of workstations (NavPut1 to

4

NavPut4), navigate to the pick-up points of workstations (NavPick1 to NavPick4), navigate

to the unload station at the warehouse (NavUnload), and a set of primitive subtasks such

as load, put, pick, unload, left, forward, and right. These are the subtasks that are naturally

important in solving the AGV scheduling task. The designer of the system uses her/his

domain knowledge to put the primitive and non-primitive subtasks of the AGV scheduling

problem together and builds a hierarchical task decomposition like the one shown in Figure

1.2. This hierarchical decomposition can later be used by HRL algorithms such as hierarchy

of abstract machines (HAMs) (Parr, 1998), options (Sutton et al., 1999; Precup, 2000),

MAXQ (Dietterich, 2000), and programmable HAMs (PHAMs) (Andre and Russell, 2001;

Andre, 2003) to optimize the AGV scheduling problem. Using of hierarchical RL methods

leads to faster convergence and better performance than the flat algorithms as we will show

for MAXQ in this thesis.

NavPick iNavPut i

NavPut i : Navigation to Dropoff Station i

: Navigation to Pickup Station iNavPick i

DM i : Deliver Material to Station i

DA : Deliver Assembly from Station i i

NavLoad : Navigation to Loading Deck

NavUnload : Navigation to Unload Deck

Root

DA2DA1

Nav

Forward RightLeft

.

.NavLoad Load Put Pick Unload

DM1 DM2

NavUnload

Figure 1.2. A hierarchical task decomposition for an AGV scheduling problem.

These HRL algorithms find the hierarchically or recursively optimal discounted reward

policy for the AGV scheduling problem when the number of states is finite. However as

we mentioned earlier, even HRL algorithms suffer from the curse of dimensionality. It will

take a long time and require too many samples for them to converge if the state space of

5

the system grows. It raises several important questions such as: 1) Is the discounted reward

optimality the most suitable optimality criterion for this task? If it is not, is it possible

to design HRL algorithms to find a more appropriate optimal policy for this problem? 2)

Consider the continuous state and action version of the AGV scheduling problem, when the

AGV must learn to navigate using low-level continuous commands instead of directional

actions such as forward or left, and it has continuous sensors instead of only viewing the

world as a discrete grid. Are the existing HRL algorithms still able to solve the problem

efficiently? 3) Consider the multi-agent version of the AGV scheduling problem where

there are several AGVs in the environment cooperating with each other to carry parts to

workstations and bring assemblies from workstations back to the warehouse. The number

of states and actions, and as a result the number of parameters to be learned, increases

dramatically with the number of agents (AGVs). Does the nature of cooperative multi-

agent problems allow us to design more efficient HRL algorithms for these domains? These

are the types of the questions that we try to address in this dissertation. We briefly describe

how we address the above questions in the next section, and leave the more elaborative

discussion for later chapters.

1.2 Our Approach

Prior work in HRL including HAMs, options, MAXQ, and PHAMs has been limited to

the discrete-time discounted reward SMDP model. However, the average reward optimality

criterion is generally more appropriate in modeling cyclical control and optimization tasks,

such as queuing, scheduling, and flexible manufacturing. We investigate two formulations

of HRL based on the average reward SMDP model, both for discrete-time and continuous-

time. These formulations correspond to two notions of optimality that have been previously

explored in HRL: hierarchical optimality and recursive optimality (Dietterich, 2000). We

present algorithms that learn to find hierarchically and recursively optimal average reward

policies under discrete-time and continuous-time average reward SMDP models. We call

6

them hierarchically optimal average reward RL (HAR) and recursively optimal aver-

age reward RL (RAR) algorithms.

Existing HRL approaches are limited to value function RL (VFRL) methods. How-

ever, there are only weak theoretical guarantees on the performance of VFRL algorithms

on problems with large or continuous state spaces. Policy gradient RL (PGRL) methods

have demonstrated better performance in problems with continuous state and/or continuous

action spaces (Marbach, 1998; Baxter et al., 2001). We propose a family of hierarchical

policy gradient RL (HPGRL) algorithms that exploit both the power of abstraction, and

the efficiency of PGRL methods in continuous state and/or continuous action problems.

However, they suffer from slow convergence of PGRL algorithms. Consider the continu-

ous state and action version of the AGV scheduling task again. The low-level subtasks such

as NavUnload are now continuous state and action problems. The AGV needs to know its

exact location and selects its action among infinite number of possibilities in order to solve

these low-level continuous state and action subtasks. In contrast, when AGV decides at the

high-level in the hierarchy, for instance to choose between delivering material to or from

machines, it needs only a rough estimate of its location. Additionally, the AGV selects its

action among only eight possible choices (DM1 to DM4 and DA1 to DA4). We acceler-

ate learning of HPGRL algorithms by formulating high-level subtasks, which usually have

smaller state and finite action spaces as VFRL problems, and low-level subtasks such as

NavUnload with infinite state and/or action spaces as PGRL problems. We call this family

of algorithms hierarchical hybrid algorithms.

Finally, we examine the use of HRL to accelerate policy learning in cooperative multi-

agent tasks. The nature of cooperative multi-agent problems allows for more efficient use

of HRL methods. Consider the multi-agent version of the AGV scheduling task again. In

our approach, AGVs use the same hierarchical task decomposition. Learning is decentral-

ized, with each agent learning three interrelated skills. First, how to perform subtasks such

as deliver material to machine M1 (DM1) or navigation to unload station (NavUnload).

7

Second, the order to do the subtasks, for instance go to the load station and pick up part

1 before heading to workstation M1. Third, how to coordinate with other agents, AGV

1 can carry part for workstation M1 while AGV 2 makes the output buffer of M1 empty.

The use of hierarchy allows AGVs to learn more efficiently by making it possible to learn

coordination skills at the level of subtasks instead of primitive actions. Subtask-level coor-

dination allows for increased cooperation skills as agents do not get confused by low-level

details. Each AGV learns high-level coordination knowledge (e.g., what is the utility of

AGV 1 carrying part to machine M1 if AGV 2 is bringing assembly back from machine

M3), rather than it learns its response to low-level primitive actions of other AGVs (e.g., if

AGV 1 goes forward, what should AGV 2 do).

In addition to the curse of dimensionality, multi-agent learning suffers from partial ob-

servability. Even if an agent has complete observability of its own state, states and actions

of other agents are not fully observable. One way to address partial observability in dis-

tributed multi-agent domains is to use communication to exchange required information.

However, communication is usually costly, which requires agents to optimize their commu-

nication policy in addition to their action policy. A further advantage of the use of temporal

abstraction in cooperative multi-agent learning is that AGVs now communicate at the level

of subtasks (temporally extended actions) instead of primitive actions. Since subtasks can

take a long time to complete, communication is needed only fairly infrequently.

In this research, we introduce a hierarchical multi-agent RL framework and present two

algorithms called Cooperative HRL and COM-Cooperative HRL. In Cooperative HRL

algorithm, we assume communication is free. In COM-Cooperative HRL algorithm, we

assume communication is costly, and agents learn both action and communication policies

that together optimize the task given the communication cost. Of course, it makes COM-

Cooperative HRL slower than Cooperative HRL due to more parameters that must be

learned.

8

1.3 Contributions

The main contributions of this dissertation are summarized below.

Hierarchical Reinforcement Learning

• We have developed a general hierarchical reinforcement learning (HRL) framework

for simultaneous learning of policies at multiple levels of the hierarchy. This frame-

work is a generalization of existing HRL approaches especially the MAXQ value

function decomposition (Dietterich, 2000). In our framework, we apply the three-

part value function decomposition (Andre and Russell, 2002) to guarantee hierar-

chical optimality, and use reward shaping (Ng et al., 1999) to reduce the burden of

exploration, thereby extending the MAXQ method.

Hierarchical Average Reward Reinforcement Learning

• We extend previous work on hierarchical reinforcement learning (HRL) to the aver-

age reward SMDP model, and investigate hierarchical and recursive optimalities in

hierarchical average reward RL.

– We have developed new discrete-time and continuous-time hierarchically opti-

mal average reward RL (HAR) algorithms. The aim of these algorithms is to

find a hierarchical policy with highest global gain.

– We have developed new discrete-time and continuous-time recursively optimal

average reward RL (RAR) algorithms. In these algorithms, we treat subtasks as

continuing average reward problems, where the goal at each subtask is to max-

imize its gain given the policies of its children. We investigate the optimality

achieved by the RAR algorithm and illustrate the conditions under which the

policy learned by this algorithm at each subtask is independent of the context

in which it is executed and therefore can be reused by other hierarchies.

9

• We empirically demonstrate the effectiveness and the type of optimality achieved by

HAR and RAR algorithms using two AGV scheduling tasks.

Hierarchical Policy Gradient Reinforcement Learning

• We have developed a family of hierarchical policy gradient RL (HPGRL) algorithms

for scaling policy gradient reinforcement learning methods to problems with contin-

uous (or large discrete) state and/or action spaces.

• We present a family of hierarchical hybrid algorithms to accelerate learning in HP-

GRL algorithms. In hierarchical hybrid algorithms, we formulate high-level sub-

tasks, which usually require low-resolution discretization of the state space and have

finite action spaces as value function RL problems, and low-level subtasks, which

usually require high-resolution discretization of the state space and may have infinite

action spaces as policy gradient RL problems.

• We empirically demonstrate the performance of hierarchical hybrid algorithms using

a continuous state and action ship steering problem.

Hierarchical Multi-Agent Reinforcement Learning

• We extend the SMDP model to cooperative multi-agent domains and present the

multi-agent SMDP (MSMDP) model.

• We have developed a hierarchical cooperative multi-agent RL framework in which

agents learn coordination faster by sharing information at the level of subtasks, rather

than attempting to learn coordination at the level of primitive actions.

• We employ this hierarchical cooperative multi-agent RL framework, and present a

hierarchical multi-agent RL algorithm called Cooperative HRL.

• We empirically demonstrate the effectiveness of the Cooperative HRL algorithm us-

ing a large four-agent AGV scheduling problem.

10

• We extend the Cooperative HRL algorithm to include communication decisions, and

present a hierarchical multi-agent RL algorithm called COM-Cooperative HRL. This

algorithm is designed to learn both action and communication policies that together

optimize the task given the communication cost.

• We empirically demonstrate the effectiveness of the COM-Cooperative HRL algo-

rithm using a multi-agent taxi problem.

1.4 Outline

The remainder of this thesis is organized as follows:

Chapter 2: We present the foundational background material for the dissertation. We be-

gin by describing the reinforcement learning (RL) problem and formalizing the Markov

decision process (MDP) and semi-Markov decision process (SMDP) frameworks under

different optimality criteria. We also review some of the key ideas and solution methods

of MDPs and SMDPs. We discuss some of the difficulties of solving MDPs for problems

with large state spaces. Then we briefly review the historical development of hierarchy and

temporal abstraction in artificial intelligence (AI), control theory, and RL. In this, we es-

pecially emphasize hierarchical reinforcement learning (HRL) and the main concepts and

algorithms in this framework. Finally, we present a brief overview of the growing field of

multi-agent reinforcement learning. In this chapter, we also introduce the notation that will

be used in this dissertation.

Chapter 3: We present a general framework for hierarchical reinforcement learning (HRL)

which is used in the algorithms proposed in this dissertation. We also illustrate the basic

concepts of HRL such as policy execution, hierarchical and recursive optimality, and value

function definitions and decompositions in this chapter.

11

Chapter 4: We present hierarchically optimal average reward RL (HAR) and recursively

optimal average reward RL (RAR) algorithms for both discrete and continuous time SMDP

models. We investigate the conditions under which the policy learned by the RAR algo-

rithm at each subtask is independent of the context in which it is executed and therefore

can be reused by other hierarchies. We use two AGV tasks to demonstrate the performance

and the type of optimality achieved by these algorithms.

Chapter 5: We first present a family of hierarchical policy gradient RL (HPGRL) al-

gorithms and compare their performance with hierarchical value function RL (VFRL) al-

gorithms in a simple taxi-fuel problem. We then show how learning can be accelerated

in HPGRL algorithms by using both value function and policy gradient RL formulations

in a hierarchy, and propose a family of hierarchical hybrid algorithms. We empirically

demonstrate the performance of a hierarchical hybrid algorithm using a continuous state

and action ship steering problem.

Chapter 6: We investigate the use of hierarchical reinforcement learning (HRL) to speed

up the acquisition of cooperative multi-agent tasks. We first extend the SMDP model to

cooperative multi-agent domains and present the multi-agent SMDP (MSMDP) model. We

use this model and present a hierarchical cooperative multi-agent RL framework. We then

use this hierarchical cooperative multi-agent RL framework, and propose two hierarchi-

cal cooperative multi-agent RL algorithms called Cooperative HRL and COM-Cooperative

HRL. While the Cooperative HRL algorithm assumes that communication is free, in the

COM-Cooperative HRL algorithm, agents learn both action and communication policies

that together optimize the task given the communication cost. The effectiveness of the

Cooperative HRL algorithm is empirically demonstrated using a large four-agent AGV

scheduling problem. We also empirically demonstrate the efficacy of the COM-Cooperative

HRL algorithm as well as the relation between the communication cost and the learned

12

communication policy using a multi-agent taxi problem.

Chapter 7: We summarize the dissertation and discuss directions for future research.

Appendix: We define a table of the symbols used in this dissertation.

13

CHAPTER 2

BACKGROUND AND NOTATION

In this chapter, we describe the reinforcement learning (RL) problem and introduce the

Markov decision process (MDP) and semi-Markov decision process (SMDP) formalisms

under different optimality criteria. We also present some of the key ideas and solution

methods of MDPs and SMDPs. Then we review the historical development of hierarchy

and temporal abstraction in artificial intelligence (AI), control theory, and RL. In this, we

especially emphasize hierarchical reinforcement learning (HRL) and the main concepts and

algorithms in this framework. Finally, we present a brief overview of the growing field of

multi-agent reinforcement learning. In doing so, we also introduce the notation that will be

used in the remainder of this dissertation.

Throughout this chapter we present the standard body of background work in the field.

For more comprehensive introduction to MDPs, SMDPs, and RL, readers may also refer to

standard texts such as (Howard, 1960, 1971; Puterman, 1994; Bertsekas, 1995; Bertsekas

and Tsitsiklis, 1996; Sutton and Barto, 1998) or the survey by Kaelbling et al. (Kaelbling

et al., 1996). Barto and Mahadevan (2003) provides more detailed introduction to HRL.

2.1 Reinforcement Learning

Reinforcement learning (RL) (Sutton and Barto, 1998) refers to a collection of meth-

ods that allow an agent (a system) to learn how to make good decisions by observing its

own behavior, and improves its actions through a reinforcement mechanism. There are

many formal specifications of this kind of problems that have been developed over the last

fifty years. The most commonly used is the Markov decision processes (MDPs). An

14

MDP assumes that the agent has full access to the state of the world and each of its ac-

tions takes a single time step. Semi-Markov decision processes (SMDPs) relax the latter

assumption and allow actions that take several time steps. Finally, partially observable

Markov decision processes (POMDPs) relax the former assumption by allowing the agent

to receive observations that do not necessarily reveal the entire state of the environment.

When a problem is modeled using one of the above, the goal of an RL method is to find a

good (possibly optimal) policy for the model. We will cover MDPs and SMDPs in detail

in Sections 2.2 and 2.3. POMDPs will be presented more briefly, as the subject of partial

observability is almost (but not completely) orthogonal to the main contributions of this

dissertation.

2.2 Markov Decision Processes

Markov decision processes (MDPs) (Howard, 1960; Puterman, 1994) are model for

sequential decision making when outcomes are uncertain. There are many possible ways

of defining MDPs, and many of these definitions are equivalent up to small transforma-

tions of the problem. One definition is that an MDP model M consists of five elements

〈S,A,P ,R, I〉 defined as follows:1

• S: is the set of states of the world.

• A: is the set of possible actions from which the agent (controller) may choose on at

each decision epoch.

• P : S×A×S → [0, 1]: is the transition probability function with P (s′|s, a) being

the probability of transition to state s′ when agent takes action a in state s.

1In non-discrete settings (when the set of states S and the set of actions A are not discrete), many subtle
mathematical issues arise, which are not in the scope of this dissertation. For more details see (Howard, 1960;
Puterman, 1994).

15

• R : S × A → IR: is the reward function with r(s, a) being the reward that agent

receives when it takes action a in state s.

• I : S → [0, 1]: is the initial state distribution.

The qualifier “Markov” is used because the transition probability and reward functions

depend on the past only through the current state of the system and the action selected by

the decision maker in that state. Since it may not be possible for the agent to take every

action at each state s, we define As ⊆ A as the set of admissible actions in state s. Events

in an MDP proceed as follows. The agent begins in an initial state s0 drawn from the initial

distribution I . At each time t, the agent observes the state of the environment st ∈ S ,

selects an action at ∈ Ast
, as a result of which the state of the system transitions to some

state st+1 ∈ S drawn from the transition probability function P (st+1|st, at), and the agent

receives reward r(st, at).

The method of specifying an agent’s behavior in an MDP is called a policy. A policy

can be stationary, in which case it is a stochastic mapping from states to actions, but it can

also be non-stationary and depend on other factors such as the agent’s memory or internal

state. A stationary policy, µ, can be deterministic, in which case it is a mapping from

states to actions µ : S → A, or stochastic, in which case it is a probability distribution

over state-action pairs µ : S × A → [0, 1] and
∑

a∈As
µ(a|s) = 1 for all s ∈ S , where

µ(a|s) represents the probability that policy µ selects action a in state s.

Now the question arises of the quality of a given policy. There are many ways of

defining optimality, but typically the quality or value of a policy is based on a function

of the future rewards. In Sections 2.2.1, 2.2.2, and 2.2.3, we examine several popular

optimality criteria in the MDP literature.

2.2.1 Undiscounted Reward Markov Decision Processes

In episodic tasks, the environment has one or more absorbing terminal states. All tran-

sitions from an absorbing terminal state lead back into the same state with probability 1.0

16

and reward 0. Typically in this setting, the goal is to maximize the expected undiscounted

sum of rewards
∑N−1

t=0 r(st, at), where N is the number of time steps taken before reaching

an absorbing state. We usually consider only policies that are proper in that all policies

reach an absorbing terminal state with probability 1.0 (Bertsekas and Tsitsiklis, 1996).

In infinite-horizon setting where the agent may take an infinite number of steps, the

undiscounted sum of rewards can be infinite. To avoid this, discounted and average reward

optimality criteria are often used, which we describe them in the next two sections.

2.2.2 Discounted Reward Markov Decision Processes

In discounted reward MDPs, near-term rewards are weighted more than distant re-

wards. In this setting, the agent’s goal is to maximize
∑∞

t=0 γtr(st, at). This sum is finite if

the discount factor 0 ≤ γ < 1, and all rewards are bounded. Note that the episodic prob-

lems can be folded into this setting — if all policies are proper and we use a discount factor

of γ = 1, the undiscounted sum of rewards of an episodic task remains finite (Bertsekas

and Tsitsiklis, 1996; Sutton and Barto, 1998).

In the infinite-horizon discounted reward setting, the value function for a policy µ,

V µ : S → IR, is a mapping from states to their values under policy µ. The value of state s

under policy µ expresses the expected discounted sum of future rewards starting from state

s and following policy µ thereafter. Formally, we define the value function of a policy as

V µ(s) =E
[

r(s0, µ(s0)) + γr(s1, µ(s1)) + γ2r(s2, µ(s2)) + . . . |s0 = s, µ
]

=E

[

∞
∑

t=0

γtr(st, at)|s0 = s, µ

]

We can relate the values of different states using what are known as the Bellman equations

(Bellman, 1957). These equations relate each state to its possible successor states.

V µ(s) =
∑

a∈As

µ(a|s)
[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V µ(s′)

]

(2.1)

17

A policy µ is optimal if, for all states, its value is at least as high as the value of any other

policy. It is known (Blackwell, 1962) that there exists a deterministic optimal policy for

infinite-horizon discounted reward MDPs. The optimal policy µ∗ is specified as

µ∗(s) = arg max
a∈As

[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

]

where V ∗ is the optimal value function, the value function of the optimal policy. Bellman

proved that the optimal value function is the solution to the following equation:

V ∗(s) = max
µ

V µ(s) = max
a∈As

[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

]

(2.2)

Similarly, the action-value function of a policy µ, Qµ : S × A → IR, is defined as a

mapping from state-action pairs to their values. The action-value function Qµ(s, a) for a

policy µ is the expected sum of discounted future rewards for taking action a in state s and

then following policy µ.

Qµ(s, a) = E

[

∞
∑

t=0

γtr(st, at)|s0 = s, a0 = a, µ

]

Note that V µ(s) = Qµ(s, µ(s)). The Bellman equation for the action-value function Qµ

can be written as

Qµ(s, a) = r(s, a) + γ
∑

s′∈S

P (s′|s, a)
∑

a′∈As′

µ(a′|s′)Qµ(s′, a′)

and the optimal action-value function Q∗ is the solution to the Bellman optimality equa-

tion for action-value function defined as follows:

Q∗(s, a) = max
µ

Qµ(s, a) = r(s, a) + γ
∑

s′∈S

P (s′|s, a) max
a′∈As′

Q∗(s′, a′) (2.3)

18

The Bellman Equations 2.2 and 2.3 are related by:

V ∗(s) = max
a∈As

Q∗(s, a)

An alternative way of defining the optimal value function is based on the Bellman operator

Γ∗ (Bertsekas, 1995) defined as

Γ∗V µ(s) = max
a∈As

Qµ(s, a)

The optimal value function V ∗ is the fixed point of V ∗ = Γ∗V ∗.

2.2.3 Average Reward Markov Decision Processes

Discounted optimization is motivated by domains where reward can be interpreted as

money that can earn interest, or where there is a fixed probability that a run will be termi-

nated at any given time. However, many domains do not have either of these properties.

Discounting in such domains tends to sacrifice long-term rewards in favor of short-term

rewards. Moreover, in general, the discounted optimal policy depends on the choice of the

value of the discount factor γ. For instance, consider the MDP of Figure 2.1 from Schwartz

(1993). Here, any undiscounted reward method will clearly choose action a1 in state s1.

But for any γ < 500
501
≈ 0.998, Qµ(s1, a2) > Qµ(s1, a1) regardless of policy µ. In fact, given

any γ, there is some value we can set for r(s1, a2) which makes the discounted criterion

favor action a2 over action a1.

It is true that for any finite MDP (an MDP with finite state and action spaces) there is

some sufficiently large γ for which the discounted and undiscounted measures agree. How-

ever, proper choice of such a γ requires detailed knowledge of the domain — the knowledge

that we do not want to presuppose. Even, with such knowledge, a parameter such as γ that

needs to be tailored to suit individual domains is clearly undesirable. Therefore, the agent

may prefer to compare policies on the basis of their average expected reward instead of

19

s 2

s 3a2

a1

a1 a2

a2a1a1

s 1

−1

+1

+1000

0
,

,

Heaven

Hell

Earth

Figure 2.1. An MDP on which discounted and undiscounted measures may disagree.

their expected discounted reward. The aim of the average reward MDP is to compute poli-

cies that yield the highest expected payoff per step. The average reward or gain associated

with a particular policy µ, gµ, is defined as

gµ(s) = lim
N→∞

1

N
E

[

N−1
∑

t=0

r(st, µ(st))|s0 = s, µ

]

(2.4)

when the state space of the MDP, S , is finite or countable, Equation 2.4 can be written as

gµ(s) = lim
N→∞

1

N

N−1
∑

t=0

(P µ)tr(s, µ(s)) = P̄
µ
r(s, µ(s)) (2.5)

where P µ and P̄
µ

= limN→∞
1
N

∑N−1
t=0 (P µ)t are the transition probability matrix and the

limiting matrix of policy µ respectively.2

A key observation that greatly simplifies the design of the average reward algorithms

is that for unichain MDPs,3 the average reward of any policy is state independent, that is

gµ(s) = gµ,∀s ∈ S . From now on in this section we assume that MDPs are unichain.

2The limiting matrix P̄ satisfies the equality PP̄ = P̄ .

3MDPs in which every stationary policy gives rise to a Markov chain with a single recurrent class.

20

In average reward MDP, a policy µ is measured using a different value function, namely

the average-adjusted sum of rewards earned following that policy.4

Hµ(s) = lim
N→∞

E

{

N−1
∑

t=0

[r(st, µ(st))− gµ] |s0 = s, µ

}

The term Hµ is usually referred to as the average-adjusted value function. Furthermore,

the average-adjusted value function satisfies the Bellman equation

Hµ(s) + gµ = r(s, µ(s)) +
∑

s′∈S

P (s′|s, µ(s))Hµ(s′)

Similarly, the average-adjusted action-value function for a policy µ, Lµ, is defined, and

it satisfies the Bellman equation

Lµ(s, a) + gµ = r(s, a) +
∑

s′∈S

P (s′|s, a)Lµ(s′, µ(s′))

We define a gain-optimal policy µ∗ as one that has the maximum average reward over all

policies, that is g∗ ≥ gµ. The gain-optimal policy satisfies the following Bellman optimality

equations for average-adjusted value function and average-adjusted action-value function

(Bertsekas, 1995).

H∗(s) + g∗ = max
a∈As

[

r(s, a) +
∑

s′∈S

P (s′|s, a)H∗(s′)

]

(2.6)

L∗(s, a) + g∗ = r(s, a) +
∑

s′∈S

P (s′|s, a) max
a′∈As′

L∗(s′, a′) (2.7)

It is proved (Howard, 1960; Puterman, 1994) that for any unichain MDP, there exist a g∗ and

a function H∗ over S that satisfy the Equation 2.6 (or a function L∗ over S×A that satisfies

4This limit assumes that all policies are aperiodic. For periodic policies, it changes to the Cesaro limit

Hµ(s) = limN→∞
1

N

∑N−1

k=0
E
{

∑k
t=0

[r(st, µ(st))− gµ] |s0 = s, µ
}

(Puterman, 1994).

21

the Equation 2.7). Further, g∗, H∗, and L∗ are gain, average-adjusted value function, and

average-adjusted action-value function of the gain-optimal policy µ∗.

2.2.4 Solution Methods for MDPs

Now that we have defined the MDP model, the next task is to solve it, i.e., to find an

optimal policy and/or the optimal value function.5 There are variety of methods for achiev-

ing this. Some methods require knowing the transition probability and reward functions

and are performed without access to an environment; these are considered offline algo-

rithms. These are the standard dynamic programming (DP) algorithms from the field of

operations research. Having the model allows the simulation of the domain so as to do

planning to find the optimal value function and/or an optimal policy without interacting

directly with the environment. Other methods work without assuming prior knowledge of

the model and operate by learning through experience in the environment; these are called

online algorithms.

Since a value function (or an action-value function) defines a policy in an MDP, one

approach to find the optimal policy is to compute the optimal value (action-value) function

first, and then extract the optimal policy from it. We call the algorithms utilizing this ap-

proach, value function algorithms. Another approach is to directly find the optimal policy.

The methods using this approach are called policy search methods. In Sections 2.2.4.1 and

2.2.4.2, we present a brief overview of the above two approaches to solve an MDP model.

2.2.4.1 Value Function Solution Methods for MDPs

Value function (VF) methods attempt to find the optimal value (action-value) function

and then extract an optimal policy from it. These algorithms have been extensively stud-

ied in the machine learning literature (Bertsekas and Tsitsiklis, 1996; Sutton and Barto,

5What we really mean by an optimal policy in this section is a reasonably good policy. Since in any
real-world AI problem it is not possible to even imagine finding optimal policies.

22

1998) and have yielded some remarkable empirical successes in a number of different do-

mains, including learning to play checkers (Samuel, 1959), backgammon (Tesauro, 1994),

job-shop scheduling (Zhang and Dietterich, 1995), dynamic channel allocation (Singh and

Bertsekas, 1996), and elevator scheduling (Crites and Barto, 1998). We now briefly review

some standard VF algorithms.

If the model is known, then Equation 2.2 defines a system of equations, the solution to

which yields the optimal value function. These equations may either be solved directly via

solving a related linear program (e.g., Gordon (1999); de Farias (2002)), or by iteratively

performing the update

V (s) = max
a∈As

[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V (s′)

]

until it converges. The latter of these is called value iteration (Bertsekas and Tsitsiklis,

1996; Sutton and Barto, 1998), which is a DP-based algorithm.

Another standard DP-based algorithm is policy iteration (Bertsekas and Tsitsiklis,

1996; Sutton and Barto, 1998). It uses a policy µ and its estimated value function V ,

and iteratively updates µ according to

µ(s) = arg max
a∈As

[

r(s, a) + γ
∑

s′∈S

P (s′|s, a)V (s′)

]

and updates V to be the value function V µ for policy µ by solving the system of linear

equations given by Equation 2.1.

Other instances of offline VF algorithms are asynchronous value iteration and asyn-

chronous policy iteration (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998).

If the agent does not know the model of the domain, we may first try to interact with the

environment to learn a model which is then used to compute optimal policies (e.g., Dyna

(Sutton, 1991) and prioritized sweeping (Moore and Atkeson, 1993)). This is known as

Model-based approach. Alternatively, we may try to learn the value (action-value) function

23

directly and do not explicitly learn a model. This approach is referred to as model-free,

in that the agent does not need to learn the transition probabilities. Most of the model-

free VF algorithms are instances of the temporal difference (TD) learning (Sutton, 1988),

where the agent updates estimates of the value (action-value) function based in part on

other estimates, without waiting for the true value. Two more popular TD methods are

SARSA (Rummery and Niranjan, 1994) and Q-learning (Watkins, 1989).

The SARSA algorithm performs the following update upon seeing a transition from

state s to s′ when taking action a:

Q(s, a) = (1− α)Q(s, a) + α [r(s, a) + γQ(s′, a′)]

where α is called the learning rate parameter. SARSA causes action-value function Q to

converge to the optimal action-value function, if a GLIE (Greedy in the Limit with Infinite

Exploration) policy is used (Singh et al., 2000a). SARSA is known as an on-policy method,

in that learns about the policy that it executes.

The Q-learning algorithm performs the following update when the agent takes action a

in state s and transitions to state s′:

Q(s, a) = (1− α)Q(s, a) + α

[

r(s, a) + γ max
a′∈As′

Q(s′, a′)

]

It can be shown that Q-learning converges with probability 1.0, if the agent uses an explo-

ration policy that takes every state infinitely often and α satisfies some conditions (Jaakkola

et al., 1994; Bertsekas and Tsitsiklis, 1996). Q-learning is known as an off-policy algo-

rithm, meaning that the agent does not have to follow the policy for which it is learning a

value function. This is advantageous in that a wider set of exploration methods are allowed.

Although most of the VF algorithms have been focused on the discounted setting, av-

erage reward VF methods have also been well studied. An average reward VF method is

24

an undiscounted infinite-horizon method for finding gain-optimal policies of an MDP (Ma-

hadevan, 1996). It is generally appropriate in modeling cyclical control and optimization

tasks, such as queuing, scheduling, and flexible manufacturing (Gershwin, 1994; Puter-

man, 1994). Several different types of average reward VF algorithms have been developed

including offline algorithms such as (Bertsekas, 1998), model-based online methods such

as (Tadepalli and Ok, 1998), discrete-time model-free online algorithms (Schwartz, 1993;

Mahadevan, 1996; Tadepalli and Ok, 1996; Abounadi et al., 2001), and continuous-time

model-free online algorithms (Mahadevan et al., 1997b; Wang and Mahadevan, 1999).

The discussion so far assumes that the state space S is sufficiently small that V can be

stored explicitly as a table, with one entry for each state. For larger MDPs, these methods

can be intractable. Specifically, in many problems, the number of states grows exponen-

tially in the number of state variables. Similarly, if we apply grid-based discretization to

an n-dimensional continuous state space to reduce the problem, we again end up with a

number of discretized states that is exponential in n. Bellman called this problem the curse

of dimensionality (Bellman, 1957), and it makes the straightforward application of RL

algorithms impractical even for many moderate-dimensional problems.

Thus, in domains with large or infinite state spaces, one looks for approximation tech-

niques that are based on a parametric representation of value function, rather than exact

representation. A few examples of previous work proposing various approaches for do-

ing so in different settings include (Van-Roy, 1998; Gordon, 1999; Koller and Parr, 2000;

Guestrin et al., 2001; Dietterich and Wang, 2002; de Farias, 2002), and this topic remains

an area of active research. The approximation methods have had some prominent empiri-

cal successes as mentioned at the beginning of this section. Despite numerous successes,

the application of VF methods becomes problematic in domains with large or infinite state

spaces. This is mainly because most algorithms for parametrically approximating value

functions suffer from the following theoretical flaw: the performance of the policy derived

from the approximate value function is not guaranteed to improve on each iteration, and in

25

fact can be worse than the policy in the previous iteration. This can happen even when the

chosen parametric class contains a value function whose derived policy is optimal (Baxter

and Bartlett, 2001). Additionally, VF methods become problematic when the state is only

partially observable, because most methods for value function estimation critically rely on

the Markov property. In the next section, we will describe an alternative approach to VF

which addresses some of the above issues, and the problems that may happen when they

are employed in complex domains.

2.2.4.2 Policy Search Solution Methods for MDPs

An alternative approach that circumvents the problems of VF methods mentioned at the

end of Section 2.2.4.1 is to directly search in the space of policies. The methods using this

approach to solve an MDP are known as policy search (PS) methods.6

PS methods have received much recent attention as a mean to solve problems with large

or infinite state spaces, and problems with partially observable states. The motivation for

this is three fold. 1) For many MDPs, the value and action-value functions can be difficult

to approximate, even though there may be simple and compactly representable policies that

perform very well. Indeed, the existence of a good, compact representation of an action-

value function implies the existence of a good, compact representation of a policy, because

an action-value function defines a policy. In contrast, there is no guarantee that the exis-

tence of a good, compact representation of a policy implies a good, compact representation

of an action-value function. 2) Because PS algorithms start with a parameterized policy, it is

relatively simple to choose a policy which incorporates prior knowledge via an appropriate

choice of the parametric form of the policy. The use of prior knowledge in VF algorithms

is not as easily realized. Finally, 3) many real domains are only partially observable, and

VF algorithms are known to be difficult to implement in such domains. Conversely, PS

6Policy iteration can also be considered a policy search (PS) method. However, since it uses value func-
tion, we categorize it as a value function (VF) method.

26

algorithms have been shown to work more effectively in partially observable domains. We

might use a class of policies that depend only on the observables. This results in a class of

memoryless (reactive) policies that can be applied to POMDP models (Williams and Singh,

1999). We can also introduce memory variables into the process state, and define limited

memory policies (Mealeau et al., 1999). It permits belief state tracking, in which the agent

uses past and present observations to estimate the true state.

Of course, while PS methods provide a powerful tool for solving many problems in RL

and control, there are also settings in which VF algorithms may be preferred. For instance,

explicitly searching in a policy space for a good policy may be computationally expensive

and more prone to local optima than certain VF methods. So, if there is reason to believe

that the value function can be easily approximated, then the VF approach would perhaps

be method of choice. Moreover, if we do not have a prior knowledge about a likely form

of a good policy, then one may instead use a VF algorithm.

A well-known class of PS algorithms are policy gradient (PG) algorithms. In these

methods, we usually consider a class of parameterized stochastic policies, estimate the gra-

dient of a performance function (e.g., average reward over time or weighted reward-to-go)

with respect to policy parameters, and then improve the policy by adjusting the parame-

ters in the direction of the gradient (Williams, 1992; Kimura et al., 1995; Marbach, 1998;

Baxter et al., 2001). This approach has a long history in operations research, statistics,

and control, forming the basis of perturbation analysis of discrete event dynamic systems

(Ho and Cao, 1991; Cassandras and Lafortune, 1999). In addition to the pros and cons of

PS methods mentioned above, one advantage of PG algorithms compared to VF methods

is that they are theoretically guaranteed to converge to locally optimal policies, whereas

VF algorithms can find globally optimal solutions. However, in practice it is usually not

feasible to converge to globally optimal solutions in large domains in any case. However,

PG methods usually suffer from the following problems. 1) They may require up to an

amount of sampling/number of steps that is exponential in the number of states or in the

27

horizon time. 2) They are also limited to stochastic policies. In some domains, it seems

very undesirable to add extra randomness to an already stochastic problem by forcing our

policy to randomly choose its actions. 3) They generally sample from the MDP once to

take a small uphill step and then throw away the data.

One way to address some of the issues of using PG methods is to assume that the

learning algorithm has access to the MDP via a generative model or a simulator (Kearns

et al., 2000; Ng and Jordan, 2000; Ng, 2003). Ng et al. (2004) recently showed a very

impressive application of this type of PS methods to autonomous helicopter flight.

2.3 Semi-Markov Decision Processes

Semi-Markov decision processes (SMDPs) (Howard, 1971; Puterman, 1994) extend the

MDP model by allowing actions that take multiple time steps to complete. The action du-

ration can depend on the transition that is made.7 The state of the system may change con-

tinually between actions, unlike MDPs where state changes are only due to actions. Thus,

SMDPs have become the preferred language for modeling temporally extended actions

(Mahadevan et al., 1997a), which makes them very appealing in the context of hierarchical

reinforcement learning, as we will see in Section 2.4.3.

An SMDP is defined as a five tuple 〈S,A,P ,R, I〉. All components are defined as in

an MDP except the transition probability function and the reward function. The transition

probability function P now takes the duration of the actions into account. The transition

probability function P : S × IN × S × A → [0, 1] is a multi-step transition probability

function, with P (s′, N |s, a) denotes the probability that action a will cause the system to

transition from state s to state s′ in N time steps. This transition is at decision epochs only.

Basically, the SMDP model represents snapshots of the system at decision points, whereas

the so-called natural process describes the evolution of the system over all times. If we

7We are thus dealing with discrete-time SMDPs. Continuous-time SMDPs typically allow arbitrary con-
tinuous action durations.

28

marginalize P (s′, N |s, a) over N , we will obtain m(s′|s, a) the transition probability for

the embedded MDP. The term m(s′|s, a) denotes the probability that the SMDP occupies

state s′ at the next decision epoch, given that the decision maker chooses action a in state s

at the current decision epoch. The key difference in the reward function for SMDPs is that

the rewards can accumulate over the entire duration of an action. As a result, SMDP reward

for taking an action in a state depends on the evolution of the system during the execution

of the action. Formally, SMDP reward is modeled as a function from R : S × A → IR,

with r(s, a) represents the expected total reward between two decision epochs, given that

the system occupies state s at the first decision epoch and the agent chooses action a. This

expected reward contains all necessary information about the reward to analyze the SMDP

model.

For each transition in an SMDP, the expected number of time steps until the next deci-

sion epoch is defined as

y(s, a) = E[N |s, a] =
∑

N∈IN

N
∑

s′∈S

P (s′, N |s, a)

The notions of policies and the various forms of optimality are the same for SMDPs as

for MDPs. In infinite-horizon SMDPs, our goal is still to find a policy that maximizes either

the expected discounted reward or the average expected reward. These two optimality

criteria for an SMDP model will be discussed in sections 2.3.1 and 2.3.2.

2.3.1 Discounted Reward Semi-Markov Decision Processes

Recall that for a discounted MDP model, we expressed the expected value for follow-

ing a policy as E [
∑∞

t=0 γtr(st, µ(st))|µ]. In discounted SMDP, because actions can take

variable amounts of time, the value of a state s under a policy µ is defined as follows:

V µ(s) = E
[

r(s0, µ(s0)) + γN0r(s1, µ(s1)) + γN0+N1r(s2, µ(s2)) + . . . |s0 = s, µ
]

29

Now we can express the Bellman equations for discounted SMDPs as

V µ(s) = r(s, µ(s)) +
∑

s′∈S,N∈IN

γNP (s′, N |s, µ(s))V µ(s′)

Qµ(s, a) = r(s, a) +
∑

s′∈S,N∈IN

γNP (s′, N |s, a)Qµ(s′, µ(s′))

Similarly, we can write the Bellman optimality equations defining the optimal value func-

tion and optimal action-value function as

V ∗(s) = max
a∈As

[

r(s, a) +
∑

s′∈S,N∈IN

γNP (s′, N |s, a)V ∗(s′)

]

Q∗(s, a) = r(s, a) +
∑

s′∈S,N∈IN

γNP (s′, N |s, a) max
a′∈As′

Q∗(s′, a′)

2.3.2 Average Reward Semi-Markov Decision Processes

The theory of infinite-horizon SMDPs with the average reward criterion is more com-

plex than that for discounted models (Howard, 1971; Puterman, 1994). To simplify expo-

sition we consider only unichain SMDPs. Under this assumption, the gain of any policy is

state independent similar to the average reward MDP model.

The average expected reward or gain for a policy µ, gµ, can be defined by taking the

ratio of the expected total reward and the expected total number of time steps.

gµ = lim inf
n→∞

E
[
∑n−1

t=0 r(st, µ(st))|µ
]

E
[
∑n−1

t=0 Nt|µ
] (2.8)

30

where Nt is the total number of time steps until the next decision epoch, when agent takes

action µ(st) in state st. When the state space of the SMDP, S , is finite or countable,

Equation 2.8 can be written as8

gµ =
m̄µr(s, µ(s))

m̄µy(s, µ(s))
(2.9)

where mµ and m̄µ = limn→∞
1
n

∑n−1
t=0 (mµ)t are the transition probability matrix and the

limiting matrix of the embedded Markov chain for policy µ respectively.9

The Bellman equations for the average-adjusted value function Hµ and the average-

adjusted action-value function Lµ can be written as

Hµ(s) = r(s, µ(s))− gµy(s, µ(s)) +
∑

s′∈S,N∈IN

P (s′, N |s, µ(s))Hµ(s′)

Lµ(s, a) = r(s, a)− gµy(s, a) +
∑

s′∈S,N∈IN

P (s′, N |s, a)Lµ(s′, µ(s′))

2.3.3 Solution Methods for SMDPs

Almost all the standard solution methods for MDPs generalize easily to SMDPs. Re-

vised policy and value iteration algorithms are straightforward, using the SMDP Bellman

equations but with all other elements remaining the same. It can be shown that these algo-

rithms converge (Howard, 1971; Puterman, 1994).

Online algorithms such as SARSA and Q-learning also generalize to the SMDP case

(Bradtke and Duff, 1995) . Parr (1998) showed that the following version of Q-learning

8Under the unichain assumption, m̄ has equal rows. Therefore, the right hand side of Equation 2.9 is a
vector with elements all equal to gµ.

9The limiting matrix m̄ satisfies the equality mm̄ = m̄.

31

converges in the SMDP case with several small differences in the conditions and assump-

tions of the proof.

Q(s, a) = (1− α)Q(s, a) + α

[

r(s, a) + γN max
a′∈As′

Q(s′, a′)

]

This is the update formula when the agent takes action a in state s, transitions to state s′,

the transition takes N time steps, and the agent receives reward r(s, a) on its way to state

s′.

2.4 Hierarchy and Temporal Abstraction

Reasoning and learning about temporally extended actions has been studied extensively

in several fields including classical AI, control theory, and RL. In this section, we look at

the historical development of hierarchy and temporal abstraction in classical AI, control,

and RL.

2.4.1 Temporal Abstraction in Classical AI

The problem of using abstraction to facilitate planning has been a key focus of AI

research since its early days. The key idea was to replace the low-level actions available to

solve a given task by macro operators, open-loop sequences of actions that can achieve

some subgoal. It can provide exponential reduction in the computational cost of finding

good plans.

Different forms of representation have been used for macro-operators, such as proce-

dural nets (Sacerdoti, 1974), and hierarchical task networks (Currie and Tate, 1991). All

these representations have these issues in common, the way in which the macro-operator

selects actions, and the model it uses to predict its consequences. However, the key issue

is learning useful macro-operators, which can be reused to solve different planning prob-

lems. Korf (1985) introduced a method which decomposes a planning problem to a set of

independent and serializable subgoals, solves subgoals individually, and then combines the

32

corresponding macro-operators to solve the larger planning problems. The SOAR system

(Laird et al., 1986) used a chunking mechanism, by which action sequences used to solve

subtasks were memorized as macro-operators. Knoblock (1990) addressed the learning of

macro-operators with the pre-conditions under which they succeed or fail. His work identi-

fies conditions under which a solution obtained in an abstracted state and action space can

be indeed executed. Drescher (1991) advocated a constructive approach in which knowl-

edge about the world is gradually acquired in the form of schemas, elementary models

containing a context (state), an action, and a result (new state). Schemas are built with the

purpose of capturing regularities in the environment, and subsequently are used to construct

new composite actions by sequencing existing primitives.

More recent research even takes into account the assumption of stochastic environment

in which the plans have to be executed (Oates and Cohen, 1996; Brafman and Tennenholtz,

1997). Probabilistic and statistical methods such as belief and value function, as well as

closed-loop behaviors are used to deal with such environments.

2.4.2 Temporal Abstraction in Control

Modeling and control of multiple time scale systems is an active research area in control

theory where temporally extended actions and models have been extensively used. Multiple

scale systems are often characterized by a fast motion superimposed over a slow motion. If

the two motions do not influence each other, then the fast motion can be modeled and then

eliminated to analyze the slow motion.

Perhaps the first application of temporal abstraction in stochastic control is the work by

Forestier and Varaiya (1978). They proposed using a two layer system where a supervisor at

the higher layer monitors the plant and intervenes only when the plant reaches a predefined

boundary condition, and lower-level controls the plant between the boundary conditions.

The problem of choosing the optimal lower-level controller at each boundary state is a

33

decision problem operating at a slower time scale with only the boundary states as states

and only the lower-level controllers as actions.

The problem of controlling a system at multiple time scales has also been addressed

by singular perturbation methods (Kokotovic et al., 1986; Ho and Cao, 1991; Cao et al.,

2002). These methods assume that the system to be controlled has state variables with fast

and slow variations. Each type of variation is modeled separately which leads to a form of

hierarchical control. The slow variation states are ignored initially, and are controlled only

after the fast variation states have been accounted for.

2.4.3 Temporal Abstraction in Reinforcement Learning

Temporally extended actions have been studied in hierarchical probabilistic planning

and hierarchical reinforcement learning (HRL). HRL is a general framework for scaling

RL to problems with large state spaces by using the task (or action) structure to restrict the

space of policies. The key principle underlying HRL is to develop learning algorithms that

do not need to learn policies from scratch, but instead reuse existing policies for simpler

subtasks (or macro-actions). Macros form the basis of hierarchical specifications of action

sequences because macros can include other macros in their definitions. It is similar to

the familiar idea of subroutine from programming languages. A subroutine can call other

subroutines as well as execute primitive commands. Most of the existing HRL models have

roughly the same semantics as hierarchies of macros. However, a macro as an open-loop

control policy is inappropriate for most interesting control purposes, especially the control

of stochastic systems. HRL methods generalize the macro idea to closed-loop policies or

more precisely, closed-loop partial policies because they are generally defined for a subset

of the state space. The partial policies must also have well-defined termination conditions.

These partial policies with well-defined termination conditions are sometimes called tem-

porally extended actions. Work in HRL has followed three main trends: focusing on

subsets of the state space in a divide-and conquer approach (state space decomposition),

34

grouping sequences or sets of actions together (temporal abstraction), and ignoring differ-

ences between states based on the context (state abstraction). Much of the work falls into

several of these categories.

Singh (1992) introduced hierarchies of abstract actions, which achieve different tasks,

as well as a hierarchy of models with variable temporal resolution. Singh used a special

purpose gating architecture to switch between abstract actions, and specialized learning

algorithms for this architecture. Kaelbling (1993a,b) proposed the idea of using subgoals

both in order to learn sub-policies and to collapse the state space. Dayan and Hinton (1993)

presented Feudal RL, a hierarchical technique which uses both temporal abstraction and

state abstraction. It recursively partitions the state space and the time scale from one level

to the next.

The difficulty with using the above methods was that decisions in HRL are no longer

made at synchronous time steps, as is traditionally assumed in RL. Instead, agent makes de-

cision in epochs of variable length, such as when a distinguishing state is reached (e.g., an

intersection in a robot navigation task), or a subtask is completed (e.g., the elevator arrives

on the first floor). Fortunately, a well-known statistical model is available to treat variable

length actions: the SMDP model described in Section 2.3. Here, state transition dynam-

ics is specified not only by the state where an action was taken, but also by parameters

specifying the length of time since the action was taken. Early work in RL on the SMDP

model studied extensions of algorithms such as Q-learning to continuous-time (Bradtke and

Duff, 1995; Mahadevan et al., 1997b). The early work on SMDP model was then expanded

to include hierarchical task models over fully or partially specified lower level subtasks,

which led to developing powerful HRL models such as hierarchies of abstract machines

(HAMs) (Parr, 1998), options (Sutton et al., 1999; Precup, 2000), MAXQ (Dietterich,

2000), and programmable HAMs (PHAMs) (Andre and Russell, 2001; Andre, 2003). In

the options model (at least in its simplest form), Sutton et. al. studied how to learn poli-

cies given fully specified policies for executing subtasks. In the HAMs formulation, Parr

35

showed how hierarchical learning could be achieved even when the policies for lower-level

subtasks were only partially specified. The MAXQ model is one of the first methods to

combine temporal abstraction with state abstraction. It provides a more comprehensive

framework for hierarchical learning where instead of policies for subtasks, the learner is

given pseudo-reward functions. Unlike options and HAMs, MAXQ does not rely directly

on reducing the entire problem to a single SMDP. Instead, a hierarchy of SMDPs is created

whose solutions can be learned simultaneously. The key feature of MAXQ is the decom-

posed representation of the value function. Dietterich views each subtask as a separate

MDP, and thus represents the value of a state within that MDP as composed of the reward

for taking an action at that state (which might be composed of many rewards along a tra-

jectory through a subtask) and the expected reward for completing the subtask. To isolate

the subtask from the calling context, Dietterich uses the notion of a pseudo-reward. At the

terminal states of a subtask, the agent is rewarded according to the pseudo-reward, which

is set a priori by the designer, and does not depend on what happens after leaving the cur-

rent subtask. Each subtask can then be treated in isolation from the rest of the problem

with the caveat that the solutions learned are only recursively optimal. Each action in the

recursively optimal policy is optimal with respect to the subtask containing the action, all

descendant subtasks, and the pseudo-reward chosen by the designer of the system. Another

important contribution of Dietterich’s work is the idea that state abstraction can be done

separately on the different components of the value function, which allows one to perform

more abstraction. We investigate the MAXQ framework and its related concepts such as

pseudo-reward, recursive optimality, value function decomposition, and state abstraction in

more details in Chapter 3. In the PHAMs model, Andre and Russell extended HAMs and

presented an agent design language for RL. Andre and Russell (2002) also addressed the

issue of safe state abstraction in HRL. Their method yields state abstraction while main-

taining hierarchical optimality.

36

HRL has also been successfully applied to behavior-based robotics (Brooks, 1986) in

several applications (Mahadevan and Connell, 1992; Lin, 1993; Digney, 1996; Mataric,

1997; Huber and Grupen, 1997). Mahadevan and Connell used a subsumption architecture

in which simple behaviors are acquired using RL and then are combined by a pre-defined

scheme to solve a complex robot box-pushing task. Lin used the decomposition of a com-

plex task into smaller subtasks, each having its own limited state space and its own reward

function. A robot can learn a behavior for solving each subtask, and then use RL at the

higher level in order to determine the best combination of sub-behaviors. Huber used RL

and a hybrid discrete event dynamical system to learn walking gaits for a robot. At the low

level, the robot uses a set of pre-existing controllers that can generate collision-free motion

and optimize forces and posture. At the higher level, RL is used to determine which con-

troller should be applied, depending on a set of discrete variables describing the state of the

system.

Recent research is also targeted toward finding temporally extended actions automati-

cally. Thrun and Schwartz (1995) and Pickett and Barto (2002) generate temporal abstrac-

tions by finding commonly occurring sub-policies in solutions to a set of tasks. Digney

(1996), McGovern and Barto (2001), Menache et al. (2002), and Simsek and Barto (2004)

identify subgoal states and generate temporally extended actions that take the agent to these

states. Digney’s subgoals are states that are visited frequently or that have a high reward

gradient. McGovern and Barto’s method identifies as subgoals those regions of the state

space that the agent visits frequently on successful trajectories but not on unsuccessful

ones. Menache et al. define subgoals as the border states of strongly connected areas

of the MDP transition graph and find them using a max-flow/min-cut algorithm. Simsek

and Barto propose a method to identify useful temporal abstractions using relative novelty.

Their definition of novelty relates it to how frequently a state is visited since a designated

start time. They define relative novelty of a state in a transition sequence as the ratio of

the novelty of states that followed it (including itself) to the novelty of the states that pre-

37

ceded it. Hengst (2002) and Jonsson and Barto (2005) proposed constructing a hierarchy

of abstractions in problems with factored state spaces. Hengst’s method orders state vari-

ables with respect to their frequency of change and adds a layer of hierarchy for each state

variable, where each layer handles a smaller MDP than its lower layers. Jonsson and Barto

determine causal relationships between state variables using a dynamic Bayesian network

(DBN) model of factored MDPs and like Hengst’s algorithm, their algorithm introduces

layers of temporally extended actions based on the causal structure of the task. Mannor

et al. (2004) find clusters of states and define temporally extended actions as a sub-policy

that allows the agent to efficiently shift from one cluster to the other. They use two differ-

ent clustering mechanisms, one that employs only topology, and one that uses the reward

structure of the problem in addition to topology.

2.5 Multi-Agent Reinforcement Learning

The analysis of multi-agent systems is a topic of interest in both economic theory and

AI. Their integration with existing methods in AI constitutes a promising area of research.

An optimal policy in a multi-agent system may depend on the behavior of other agents,

which is often not predictable. It makes learning and adaptation a necessary component of

an agent. Multi-agent learning studies algorithms for selecting actions for multiple agents

coexisting in the same environment. This is a complicated problem, because the behav-

iors of the other agents can be changing as they also adapt to achieve their own goals. It

usually makes the environment non-stationary and often non-Markovian as well (Mataric,

1997). Robosoccer; disaster rescue, where robots must safely find victims as fast as possi-

ble after an earthquake; e-commerce; manufacturing systems, where managers of a factory

coordinate to maximize the profit; and distributed sensor networks, where multiple sen-

sors collaborate to perform a large-scale sensing task under strict power constraints, are

examples of challenging multi-agent domains that need robust learning algorithms for co-

38

ordination among multiple agents or effectively responding to other agents (Weiss, 1999;

Lesser et al., 2003).

In addition to the existing methods in distributed AI and machine learning, game theory

also provides a framework for research in multi-agent learning. The game theoretic con-

cepts of stochastic game and Nash equilibria (Owen, 1995; Filar and Vrieze, 1997) are

the foundation for much of the recent research in multi-agent learning. Learning algorithms

use stochastic games as a natural extension of MDPs to multiple agents. These algorithms

can be summarized by broadly grouping them into two categories: equilibria learners and

best-response learners. Equilibria learners such as Minimax-Q (Littman, 1994), Nash-Q

(Hu and Wellman, 1998), the gradient ascent learner in (Singh et al., 2000b), and Friend-or-

Foe-Q (Littman, 2001) seek to learn an equilibrium of the game by iteratively computing

intermediate equilibria. They guarantee convergence to their part of an equilibrium so-

lution regardless of the behavior of the other agents. On the other hand, best-response

learners seek to learn the best response to the other agents. Although not an explicitly

multi-agent algorithm, Q-learning (Watkins, 1989) was one of the first algorithms applied

to multi-agent problems (Tan, 1993; Crites and Barto, 1998). Joint-state/joint-action learn-

ers (Boutilier, 1999) and WoLF-PHC (Bowling and Veloso, 2002) are another examples of

a best-response learner. It has been shown by Bowling and Veloso (2002) that if an algo-

rithm in which best-response learners playing with each other converges, it must be to a

Nash equilibrium.

Multi-agent learning has been recognized to be challenging for two main reasons: 1)

curse of dimensionality: the number of parameters to be learned increases dramatically

with the number of agents, and 2) partial observability: states and actions of the other

agents which are required for an agent to make decision are not fully observable and inter-

agent communication is usually costly.

Prior work in multi-agent learning have addressed the curse of dimensionality in many

different ways. One natural approach is to restrict the amount of information that is avail-

39

able to each agent and hope to maximize the global payoff by solving local optimization

problems for each agent. This idea has been addressed using value function RL (Schneider

et al., 1999) as well as policy gradient RL (Peshkin et al., 2000). Another approach is to

exploit the structure in a multi-agent problem using factored value functions. Guestrin et al.

(2002) integrate these ideas in collaborative multi-agent domains. They use value function

approximation and approximate the joint value function as a linear combination of local

value functions, each of which relates only to the parts of the system controlled by a small

number of agents. Factored value functions allow the agents to find a globally optimal

joint-action using a message passing scheme. However, this approach does not address the

communication cost in its message passing strategy.

Graphical models have also been used to address the curse of dimensionality in multi-

agent systems. This work seeks to transfer the representational and computational benefits

that graphical models provide to probabilistic inference in multi-agent systems and game

theory (La-Mura, 2000; Koller and Milch, 2001). The previous work established algorithms

for computing Nash equilibria in one-stage games, including efficient algorithms for com-

puting approximate (Kearns et al., 2001) and exact (Littman et al., 2002) Nash equilibria in

tree-structured games, and convergent heuristics for computing Nash equilibria in general

graphs (Vickrey and Koller, 2002; Ortiz and Kearns, 2003).

The curse of dimensionality has also been addressed in multi-agent robotics. Multi-

robot learning methods usually reduce the complexity of the problem by not modeling

joint states or actions explicitly, such as work by Mataric (1997) and Balch and Arkin

(1998), among others. In such systems, each robot maintains its position in a formation

depending on the locations of the other robots, so there is some implicit communication or

sensing of states and actions of the other agents. There has also been work on reducing the

parameters needed for Q-learning in multi-agent domains by learning action-values over a

set of derived features (Stone and Veloso, 1999). These derived features are domain specific

and have to be encoded by hand, or constructed by a supervised learning algorithm.

40

Almost all the above methods ignore the problem that an agent might not have free

access to the other agents’ information that are required to make its own decision. In gen-

eral, the world is partially observable for each agent in a distributed multi-agent setting.

POMDPs have been used to model partial observability in probabilistic AI. The POMDP

framework can be extended to allow for multiple distributed agents to base their decisions

on their local observations. This model is called decentralized POMDP (DEC-POMDP)

and it has been shown that the decision problem for a DEC-POMDP is NEXP-complete

(Bernstein et al., 2000). One way to address partial observability in distributed multi-agent

domains is to use communication to exchange required information. However, since com-

munication can be costly, in addition to its normal actions, each agent needs to decide

about communication with other agents (Xuan et al., 2001; Xuan and Lesser, 2002). Py-

nadath and Tambe (2002) extended DEC-POMDP by including communication decisions

in the model, and proposed a framework called communicative multi-agent team deci-

sion problem (COM-MTDP). Since DEC-POMDP can be reduced to COM-MTDP with

no communication by copying all the other model features, decision problem for a COM-

MTDP is also NEXP-complete (Pynadath and Tambe, 2002). The trade-off between the

quality of solution, the cost of communication, and the complexity of the model is cur-

rently a very active area of research in multi-agent learning and planning.

41

CHAPTER 3

A FRAMEWORK FOR HIERARCHICAL REINFORCEMENT
LEARNING

In this chapter, we introduce a general hierarchical reinforcement learning (HRL) frame-

work for simultaneous learning of policies at multiple levels of hierarchy. Our treatment

builds upon the existing approaches such as HAMs (Parr, 1998), options (Sutton et al.,

1999; Precup, 2000), MAXQ (Dietterich, 2000), and PHAMs (Andre and Russell, 2002;

Andre, 2003), especially the MAXQ value function decomposition. In our framework,

we add three-part value function decomposition (Andre and Russell, 2002) to guarantee

hierarchical optimality, and reward shaping (Ng et al., 1999) to reduce the burden of ex-

ploration, to the MAXQ method. Rather than redundantly explain MAXQ and then our

hierarchical framework, we will present our model and note throughout this chapter where

the key pieces were inspired by or are directly related to Dietterich’s MAXQ work. In the

following chapters, we first extend this framework to the average reward model, then we

generalize it to be applicable to problems with continuous state and/or action spaces, and

finally broaden it to be appropriate for domains with multiple cooperative agents.

3.1 Motivating Example

In the HRL framework, the designer of the system imposes a hierarchy on the problem

to incorporate domain knowledge and thereby reduces the size of the space that must be

searched to find a good policy. The designer recursively decomposes the overall task into a

collection of subtasks that she/he believes are important for solving the problem.

Let us illustrate the main ideas using a simple search task shown in Figure 3.1. Consider

the case where, in an office (rooms and connecting corridors) type environment, a robot is

42

assigned the task of picking up trash from trash cans (T1 and T2) over an extended area

and accumulating it into one centralized trash bin (Dump), from where it might be sent for

recycling or disposed. For simplicity, we assume that the robot can observe its true location

in the environment. The main subtasks in this problem are root (the whole trash collection

task), collect trash at T1 and T2, navigate to T1, T2, and Dump. Each of these subtasks

is defined by a set of termination states. After defining subtasks, we must indicate for each

subtask, which other subtasks or primitive actions it should employ to reach its goal. For

example, navigate to T1, T2, and Dump use three primitive actions find wall, align with

wall, and follow wall. Collect trash at T1 uses two subtasks navigate to T1 and Dump,

plus two primitive actions Put and Pick, and so on. Like MAXQ, all of this information can

be summarized by a directed acyclic graph called the task graph. The task graph for the

trash collection problem is shown in Figure 3.1. This hierarchical model is able to support

state abstraction (while the agent is moving toward the Dump, the status of trash cans

T1 and T2 is irrelevant and cannot affect this navigation process. Therefore, the variables

defining the status of trash cans T1 and T2 can be removed from the state space of the

navigate to Dump subtask) and subtask sharing (if the system could learn how to solve

the navigate to Dump subtask once, then the solution could be shared by both collect trash

at T1 and T2 subtasks).

Like HAMs (Parr, 1998), options (Sutton et al., 1999; Precup, 2000), MAXQ (Diet-

terich, 2000), and PHAMs (Andre and Russell, 2001; Andre, 2003), this framework also

relies on the theory of SMDPs. While SMDP theory provides the theoretical underpinnings

of temporal abstraction by modeling actions that take varying amounts of time, the SMDP

model provides little in the way of concrete representational guidance, which is critical

from a computational point of view. In particular, the SMDP model does not specify how

tasks can be broken up into subtasks, how to decompose value functions, etc. We examine

these issues next.

43

Collect Trash at T1 Collect Trash at T2

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Find Wall Align with Wall Follow Wall

Room3

Corridor

A

Dump

T2

T1

Room1

Room2

A : Agent

Dump: Location for depositing all trash
T2: Location of another trash can
T1: Location of one trash can

Figure 3.1. A robot trash collection task and its associated task graph.

As in MAXQ, a task hierarchy such as the one illustrated above can be modeled by

decomposing the overall task MDPM, into a finite set of subtasks {M0,M1, . . . ,Mm−1},

where M0 is the root task. Solving M0 solves the entire MDPM.

Definition 3.1: Each non-primitive subtask Mi (Mi is not a primitive action) consists

of five components (Si, Ii, Ti, Ai, Ri):

• Si is the state space for subtask Mi. It is described by those state variables that are

relevant to subtask Mi. The range of a state variable describing Si might be a subset

of its range in S (the state space of MDPM).

• Ii ⊆ Si is the initiation set for subtask Mi. Subtask Mi can be initiated only in states

belonging to Ii.

• Ti ⊆ Si is the set of terminal states for subtask Mi. Subtask Mi terminates when

it reaches a state in Ti. A policy for subtask Mi can only be executed if the current

state s belongs to (Si − Ti).

• Ai is the set of actions that can be performed to achieve subtask Mi. These actions

can be either primitive actions from A (the set of primitive actions for MDP M),

44

or they can be other subtasks. Technically, Ai is a function of states, since it may

differ from one state to another. However, we will suppress this dependence in our

notation.

• Ri is the reward structure inside subtask Mi and could be different from the reward

function of MDP M. Here we use the idea of reward shaping (Ng et al., 1999)

and define a more general reward structure than MAXQ’s, which specifies a pseudo-

reward only for transitions to terminal states. Reward shaping is a method for guiding

an agent toward a solution without constraining the search space. Besides the reward

of the overall task MDP M, each subtask Mi can use additional rewards to guide

its local learning. Additional rewards are only used inside each subtask and do not

propagate to upper levels in the hierarchy. If the reward structure inside a subtask is

different from the reward function of the overall task, we need to define two types of

value functions for each subtask, internal value function and external value function.

The internal value function is defined based on both the local reward structure of

the subtask and the reward of the overall task, and only used in learning the subtask.

On the other hand, the external value function is defined only based on the reward

function of the overall task and is propagated to the higher levels in the hierarchy

to be used in learning the global policy. This reward structure for each subtask in

our framework is more general than the one in MAXQ, and of course, includes the

MAXQ’s pseudo-reward.1 �

Each primitive action a is a primitive subtask in this decomposition, such that a is

always executable and it terminates immediately after execution. From now on in this

thesis, we use subtask to refer to non-primitive subtasks.

1The MAXQ pseudo-reward function is defined only for transitions to terminal states, and is zero for
non-terminal states.

45

3.2 Policy Execution

If we have a policy for each subtask in the hierarchy, we can define a hierarchical pol-

icy for the model.

Definition 3.2: A hierarchical policy µ is a set of policies, one policy for each of the

subtasks in the hierarchy: µ = {µ0, . . . , µm−1}. �

The hierarchical policy is executed using a stack discipline, similar to ordinary program-

ming languages. Each subtask policy takes a state and returns the name of a primitive

action to execute or the name of a subtask to invoke. When a subtask is invoked, its name

is pushed onto the Task-Stack and its policy is executed until it enters one of its terminal

states. When a subtask terminates, its name is popped off the Task-Stack. If any subtask on

the Task-Stack terminates, then all subtasks below it are immediately aborted, and control

returns to the subtask that had invoked the terminated subtask. Hence, at any time, the root

task is located at the bottom and the subtask which is currently being executed is located at

the top of the Task-Stack.

Under a hierarchical policy µ, we define a multi-step transition probability P µ
i : Si ×

IN × Si → [0, 1] for each subtask Mi in the hierarchy, where P µ
i (s′, N |s) denotes the

probability that hierarchical policy µ will cause the system to transition from state s to

state s′ in N time steps at subtask Mi. We also define a multi-step abstract transition

probability F µ
i : Si × IN × Si → [0, 1] for each subtask Mi under the hierarchical policy

µ. The term F µ
i (s′, N |s) denotes the N -step abstract transition probability from state s to

state s′ under hierarchical policy µ at subtask Mi, where N is the number of actions taken

by subtask Mi, not the number of primitive actions taken in this transition. In this thesis, we

use the multi-step abstract transition probability F µ
i to model state transition at the subtask

level, and the multi-step transition probability P µ
i to model state transition at the level of

primitive actions. Finally, we define a single-step transition probability P µ : S×S → [0, 1]

46

under the hierarchical policy µ, where P µ(s′|s) denotes the probability that the hierarchical

policy µ will cause the system to transition from state s to state s′ at the level of primitive

actions.

3.3 Local versus Global Optimality

Using hierarchy reduces the size of the space that must be searched to find a good pol-

icy. However, a hierarchy constrains the space of possible policies so that it may not be

possible to represent the optimal policy or its value function, and hence make it impossi-

ble to learn the optimal policy. If we cannot learn the optimal policy, the next best target

would be to learn the best policy that is consistent with the given hierarchy. Two notions of

optimality have been explored in the previous work on hierarchical reinforcement learning,

hierarchical optimality and recursive optimality (Dietterich, 2000).

Definition 3.3: A hierarchical optimal policy for MDPM is a hierarchical policy which

has the best performance among all policies consistent with the given hierarchy. In other

words, hierarchical optimality is a global optimum consistent with the given hierarchy. In

this form of optimality, the policy for each individual subtask is not necessarily optimal,

but the policy for the entire hierarchy is optimal. The HAMQ HRL algorithm (Parr, 1998)

and the SMDP Q-learning algorithm for a fixed set of options (Sutton et al., 1999; Precup,

2000) both converge to a hierarchically optimal policy. �

Definition 3.4: Recursive optimality, first introduced by Dietterich (2000), is a weaker

but more flexible form of optimality which only guarantees that the policy of each sub-

task is optimal given the policies of its children. It is an important and flexible form of

optimality because it permits each subtask to learn a locally optimal policy while ignoring

the behavior of its ancestors in the hierarchy. This increases the opportunity for subtask

47

sharing and state abstraction. The MAXQ-Q HRL algorithm (Dietterich, 2000) converges

to a recursively optimal policy. �

3.4 Value Function Definitions

For recursive optimality, the goal is to find a hierarchical policy µ = {µ0, . . . , µm−1}

such that for each subtask Mi in the hierarchy, the expected cumulative reward of execut-

ing policy µi and the policies of all descendants of Mi is maximized. In this case, the

value function to be learned for subtask Mi under hierarchical policy µ must contain only

the reward received during the execution of subtask Mi. We call this the projected value

function after Dietterich (2000), and define it as follows:

Definition 3.5: The projected value function of a hierarchical policy µ on subtask Mi,

denoted V̂ µ(i, s), is the expected cumulative reward of executing policy µi and the policies

of all descendants of Mi starting in state s ∈ Si until Mi terminates. �

The expected cumulative reward outside a subtask is not a part of its projected value func-

tion. It makes the projected value function of a subtask dependent only on the subtask and

its descendants.

On the other hand, for hierarchical optimality, the goal is to find a hierarchical pol-

icy that maximizes the expected cumulative reward. In this case, the value function to be

learned for subtask Mi under hierarchical policy µ must contain the reward received during

the execution of subtask Mi, and the reward after subtask Mi terminates. We call this the

hierarchical value function following Dietterich (2000). The hierarchical value function

of a subtask includes the expected reward outside the subtask and therefore depends on

the subtask and all its ancestors up to the root of the hierarchy. In the case of hierarchical

optimality, we need to consider the contents of the Task-Stack as an additional part of the

state space of the problem, since a subtask might be shared by multiple parents.

48

Definition 3.6: Ω is the space of possible values of the Task-Stack for hierarchyH. �

Let us define joint state space X = Ω × S for the hierarchy H as the cross product of

the set of the Task-Stack values Ω and the states space S . We define the hierarchical value

function using joint state space X as

Definition 3.7: A hierarchical value function for subtask Mi in state x = (ω, s) under

hierarchical policy µ, denoted V µ(i, x), is the expected cumulative reward of following

the hierarchical policy µ starting in state s ∈ Si and Task-Stack ω. �

The current subtask Mi is a part of the Task-Stack ω and as a result is a part of the state

x. So we can exclude it from the hierarchical value function notation and write V µ(i, x) as

V µ(x). However for clearance, we use V µ(i, x) in the rest of this dissertation.

Theorem 3.1: Under a hierarchical policy µ, each subtask Mi can be modeled by an

SMDP consisting of components (Si, Ai, P
µ
i , R̄i), where ∀a ∈ Ai, R̄i(s, a) = V̂ µ(a, s). �

This theorem is similar to Theorem 1 in Dietterich (2000). Using this theorem, we can de-

fine a recursive optimal policy for MDPM with hierarchical decomposition {M0,M1, . . .

,Mm−1} as a hierarchical policy µ = {µ0, . . . , µm−1} such that for each subtask Mi, the

corresponding policy µi is optimal for the SMDP defined by the tuple (Si, Ai, P
µ
i , R̄i).

3.5 Value Function Decomposition

A value function decomposition splits the value of a state or a state-action pair into

multiple additive components. Modularity in the hierarchical structure of a task allows us

to carry out this decomposition along subtask boundaries. In this section, we first describe

49

the two-part or MAXQ decomposition proposed by Dietterich (2000), and then the three-

part decomposition proposed by Andre and Russell (2002). We use both decompositions in

our hierarchical framework depending on the type of optimality (hierarchical or recursive)

that we are interested in.

The two-part value function decomposition is at the center of the MAXQ method. The

purpose of this decomposition is to decompose the projected value function of the root task,

V̂ µ(0, s), in terms of the projected value functions of all of the subtasks in the hierarchy.

The projected value of subtask Mi at state s under hierarchical policy µ can be written as

V̂ µ(i, s) = E

[

∞
∑

k=0

γkr(sk, ak)|s0 = s,µ

]

(3.1)

Now let us suppose that the first action chosen by µi is invoked and it executes for a number

of steps N and terminates in state s′ according to P µ
i (s′, N |s). We can re-write Equation

3.1 as

V̂ µ(i, s) = E

[

N−1
∑

k=0

γkr(sk, ak) +
∞
∑

k=N

γkr(sk, ak)|s0 = s,µ

]

(3.2)

The first summation on the right-hand side of Equation 3.2 is the discounted sum of re-

wards for executing subtask µi(s) starting in state s until it terminates, in other words, it

is V̂ µ(µi(s), s), the projected value function of the child task µi(s). The second term on

the right-hand side of the equation is the projected value of state s′ for the current task Mi,

V̂ µ(i, s′), discounted by γN , where s′ is the current state when subroutine µi(s) terminates

and N is the number of transition steps from state s to state s′. We can therefore write

Equation 3.2 in the form of a Bellman equation:

V̂ µ(i, s) = V̂ µ(µi(s), s) +
∑

s′,N

Pµ
i (s′, N |s)γN V̂ µ(i, s′) (3.3)

50

Equation 3.3 can be re-stated for the projected action-value function as follows:

Q̂µ(i, s, a) = V̂ µ(a, s) +
∑

s′,N

Pµ
i (s′, N |s, a)γNQ̂µ(i, s′, µi(s

′)) (3.4)

The right-most term in this equation is the expected discounted cumulative reward of com-

pleting subtask Mi after executing subtask Ma in state s. Dietterich called this term com-

pletion function and is denoted by Cµ(i, s, a). With this definition, we can express the

projected action-value function recursively as

Q̂µ(i, s, a) = V̂ µ(a, s) + Cµ(i, s, a) (3.5)

and we can re-express the definition for projected value function as

V̂ µ(i, s) =

Q̂µ(i, s, µi(s)) if Mi is a non-primitive subtask,
∑

s′ P (s′|s, i)r(s, i) if Mi is a primitive action.
(3.6)

Equations 3.5 and 3.6 are referred to as two-part decomposition equations for a hierarchy

under a fixed hierarchical policy µ. These equations recursively decompose the projected

value function for the root into the projected value functions for the individual subtasks,

M1, . . . ,Mm−1, and the individual completion functions Cµ(j, s, a) for j = 1, . . . ,m− 1.

The fundamental quantities that must be stored to represent the value function decompo-

sition are the C values for all non-primitive subtasks and the V values for all primitive

actions.2 The two-part decomposition is summarized graphically in Figure 3.2. As men-

tioned in Section 3.4, since the expected reward after execution of subtask Mi is not a

component of the projected action-value function, the two-part decomposition allows only

for recursive optimality.

2The projected value function and value function are the same for a primitive action.

51

V(i,s)

V(a,s)

Part 1
Part 2

C(i,s,a)

s ’

Execution of Subtask i

s s
I T

s

Execution of Subtask a

Figure 3.2. This figure shows the two-part decomposition for V̂ (i, s), the projected value
function of subtask Mi for the shaded state s. Each circle is a state of the SMDP visited by
the agent. Subtask Mi is initiated at state sI and terminates at state sT . The projected value
function V̂ (i, s) is broken into two parts: Part 1) the projected value function of subtask
Ma for state s, and Part 2) the completion function, the expected discounted cumulative
reward of completing subtask Mi after executing subtask Ma in state s.

Andre and Russell (2002) proposed a three-part value function decomposition for achiev-

ing hierarchical optimality. They add a third component for the expected sum of rewards

outside the current subtask to the two-part value function decomposition. This decomposi-

tion decomposes the hierarchical value function of each subtask into three parts. As shown

in Figure 3.3, these three parts correspond to executing the current action (which might it-

self be a subtask), completing the rest of the current subtask (so far is similar to the MAXQ

decomposition), and all actions outside the current subtask.

52

x=(,s)ω

V(a,s)

Part 1
Part 2

C(i,s,a)

Part 3

Execution of Subtask i

I T
xx x ’

V(i,x)

Execution of Subtask a

Figure 3.3. This figure shows the three-part decomposition for V (i, x), the hierarchical
value function of subtask Mi for the shaded state x = (ω, s). Each circle is a state of the
SMDP visited by the agent. Subtask Mi is initiated at state xI and terminates at state xT .
The hierarchical value function V (i, x) is broken into three parts: Part 1) the projected
value function of subtask Ma for state s, Part 2) the completion function, the expected
discounted cumulative reward of completing subtask Mi after executing subtask Ma in
state s, and Part 3) the sum of all rewards after termination of subtask Mi.

53

CHAPTER 4

HIERARCHICAL AVERAGE REWARD REINFORCEMENT
LEARNING

As described in Chapter 2, the average-reward formulation is more appropriate for a

wide class of continuing tasks than more well-studied discounted reward framework. A

primary goal of continuing tasks, including manufacturing, scheduling, queuing, and in-

ventory control, is to find a gain-optimal policy that maximizes (minimizes) the long-run

average reward (cost) over time. Although average reward reinforcement learning (RL)

has been studied using both the discrete-time MDP model (Schwartz, 1993; Mahadevan,

1996; Tadepalli and Ok, 1996; Marbach, 1998; Van-Roy, 1998) as well as the continuous-

time SMDP model (Mahadevan et al., 1997b; Wang and Mahadevan, 1999), prior work has

been limited to flat policy representations.

In this chapter,1 we extend previous work on hierarchical reinforcement learning (HRL)

to the average reward framework, and investigate two formulations of HRL based on the

average reward SMDP model. These two formulations correspond to two notions of opti-

mality in HRL: hierarchical optimality and recursive optimality described in Section 3.3.

We present discrete-time and continuous-time algorithms that learn to find hierarchically

and recursively optimal average reward policies. In these algorithms, we assume that the

overall task (the root of the hierarchy) is continuing. In the hierarchically optimal average

reward RL (HAR) algorithms, the aim is to find a hierarchical policy within the space of

1Most of the work presented in this chapter first appeared in 1) Ghavamzadeh and Mahadevan (2001),
“Continuous-Time Hierarchical Reinforcement Learning,” Proceedings of the Eighteenth International Con-
ference on Machine Learning", pp. 186-193, and 2) Ghavamzadeh and Mahadevan (2002), “Hierarchically
Optimal Average Reward Reinforcement Learning,” Proceedings of the Nineteenth International Conference
on Machine Learning", pp. 195-202.

54

policies defined by the hierarchical decomposition that maximizes the global gain. In the

recursively optimal average reward RL (RAR) algorithms, we treat subtasks as continu-

ing average reward problems, where the goal at each subtask is to maximize its gain given

the policies of its children. We investigate the conditions under which the policy learned by

the RAR algorithm at each subtask is independent of the context in which it is executed and

therefore can be reused by other hierarchies. We use two experimental testbeds to study the

empirical performance of the proposed algorithms. The first problem is a small automated

guided vehicle (AGV) scheduling task. The second problem is a relatively large AGV

scheduling task. We model the second AGV task using both discrete-time and continuous-

time models. We compare the performance of our proposed algorithms with other HRL

methods and a flat average reward RL algorithm in this task.

The rest of this chapter is organized as follows. In Section 4.1, we present discrete-

time and continuous-time hierarchically optimal average reward RL (HAR) algorithms. In

Section 4.2, we investigate different methods to formulate subtasks in a recursively optimal

average reward RL setting, and present discrete-time and continuous-time recursively opti-

mal average reward RL (RAR) algorithms. We demonstrate the type of optimality achieved

by HAR and RAR algorithms as well as their performance and speed compared to other

algorithms in Section 4.3. Finally, Section 4.4 summarizes the chapter and discusses some

directions for future work.

4.1 Hierarchically Optimal Average Reward RL Algorithm

Given the basic concepts of the average reward MDP and the average reward SMDP

models described in Sections 2.2.3 and 2.3.2, and the fundamental principles of HRL and

the HRL framework illustrated in Chapter 3, we can now proceed to describe a hierar-

chically optimal average reward RL formulation. Since we are interested in hierarchical

optimality, we include the contents of the Task-Stack as a part of the state space of the

problem. In this section, we consider HRL problems for which the following assumptions

55

hold.

Assumption 4.1 (Continuing Root Task): The root of the hierarchy is a continuing task,

i.e., the root task goes on continually without termination. �

Assumption 4.2: For every hierarchical policy µ, the single-step transition probability

matrix P µ is unichain, that is, it consists of a single recurrent class plus a possibly empty

set of transient states. �

If Assumptions 4.1 and 4.2 hold, using Equation 2.5, the gain2

gµ = lim
N→∞

1

N

N−1
∑

t=0

(P µ)tr(x,µ(x)) = P̄
µ
r(x,µ(x)) (4.1)

is well defined for every hierarchical policy µ and does not depend on the initial state. We

call gµ the global gain under the hierarchical policy µ. The global gain, gµ, is the gain of

the Markov chain that will result from flattening the hierarchy using the hierarchical policy

µ.

We are interested in finding a hierarchical policy µ∗ which maximizes the global gain,

i.e.,

gµ∗ ≥ gµ, for all µ (4.2)

We refer to a hierarchical policy µ∗ which satisfies Equation 4.2 as a hierarchically optimal

average reward policy, and to gµ∗

as the optimal average reward or the optimal gain.

2Under the unichain assumption, P̄
µ

has equal rows. Therefore, the right hand side of Equation 4.1 is a
vector with elements all equal to gµ.

56

Here we replace value and action-value functions in the hierarchical model of Chapter

3 with average-adjusted value and average-adjusted action-value functions described in

Sections 2.2.3 and 2.3.2.

The hierarchical average-adjusted value function for hierarchical policy µ and sub-

task Mi, denoted Hµ(i, x), is the average-adjusted sum of rewards earned by following

hierarchical policy µ starting in state x = (ω, s) until Mi terminates, plus the expected

average-adjusted reward outside subtask Mi.

Hµ(i, x) = lim
N→∞

E

{

N−1
∑

k=0

[r(xk, ak)− gµ] |x0 = x,µ

}

(4.3)

Here the rewards are adjusted with gµ, the global gain under the hierarchical policy µ.

Now let us suppose that the first action chosen by µi is executed for a number of prim-

itive steps N1 and terminates in state x1 = (ω, s1) according to multi-step transition proba-

bility P
µ
i (x1, N1|x, µi(x)), and after that subtask Mi itself executes for N2 steps at the level

of subtask Mi (N2 is the number of actions taken by subtask Mi, not the number of primi-

tive actions) and terminates in state x2 = (ω, s2) according to multi-step abstract transition

probability F µ
i (x2, N2|x1). We can re-write Equation 4.3 in the form of a Bellman equation

as

Hµ(i, x) = r
µ
i (x, µi(x))− gµy

µ
i (x, µi(x)) +

(4.4)

∑

N1,s1∈Si

P
µ
i (x1, N1|x, µi(x))

Ĥµ(i, x1) +
∑

N2,s2∈Si

F
µ
i (x2, N2|x1)H

µ(Parent(i), (ω ↗ i, s2))

where Ĥµ(i, .) is the projected average-adjusted value function of hierarchical policy µ

and subtask Mi, yµ
i (x, µi(x)) is the expected number of time steps until the next decision

epoch of subtask Mi after taking action µi(x) in state x and following hierarchical policy µ

afterward, and ω ↗ i is the content of the Task-Stack after popping subtask Mi off. Notice

that Ĥ does not contain the average-adjusted rewards outside the current subtask and should

57

be distinguished from the hierarchical average-adjusted value function H which includes

the sum of average-adjusted rewards outside the current subtask.

Since rµ
i (x, µi(x)) is the expected reward between two decision epochs of subtask Mi,

given that the system occupies state x at the first decision epoch, and the agent chooses

action µi(x), we have

r
µ
i (x, µi(x)) = V̂ µ(µi(x), (µi(x)↘ ω, s)) = Ĥµ(µi(x), (µi(x)↘ ω, s)) + gµy

µ
i (x, µi(x))

where µi(x)↘ ω is the content of the Task-Stack after pushing subtask µi(x) onto it. By

replacing rµ
i (x, µi(x)) from the above expression, Equation 4.4 can be written as

Hµ(i, x) = Ĥµ(µi(x), (µi(x)↘ ω, s)) +

(4.5)

∑

N1,s1∈Si

P
µ
i (x1, N1|x, µi(x))

Ĥµ(i, x1) +
∑

N2,s2∈Si

F
µ
i (x2, N2|x1)H

µ(Parent(i), (ω ↗ i, s2))

We can restate Equation 4.5 for hierarchical average-adjusted action-value function as

Lµ (i, x, a) = Ĥµ(a, (a↘ ω, s)) +
∑

N1,s1∈Si

P
µ
i (x1, N1|x, a)

(4.6)

Ĥµ(i, x1) +
∑

N2,s2∈Si

F
µ
i (x2, N2|x1)L

µ(Parent(i), (ω ↗ i, s2), µparent(i)(ω ↗ i, s2))

From Equation 4.6, we can re-express the hierarchical average-adjusted action-value func-

tion L recursively as

Lµ(i, x, a) = Ĥµ(a, (a↘ ω, s)) + Cµ(i, x, a) + CEµ(i, x, a) (4.7)

58

where

Cµ(i, x, a) =
∑

N1,s1∈Si

Pµ
i (x1, N1|x, a)Ĥµ(i, x1) (4.8)

and

CEµ(i, x, a) =
∑

N1,s1∈Si

P
µ
i (x1, N1|x, a)

(4.9)

∑

N2,s2∈Si

F
µ
i (x2, N2|x1)L

µ(Parent(i), (ω ↗ i, s2), µparent(i)(ω ↗ i, s2))

The term Cµ(i, x, a) is the expected average-adjusted reward of completing subtask Mi

after executing action a in state x = (ω, s). We call this term completion function after

Dietterich (2000). The term CEµ(i, x, a) is the expected average-adjusted reward received

after subtask Mi terminates. We call this term external completion function after Andre

and Russell (2002).

We can re-express the definition of Ĥ as

Ĥµ(i, x) =

L̂µ(i, x, µi(x)) if Mi is a non-primitive subtask,

r(s, i)− gµ if Mi is a primitive action.
(4.10)

where L̂µ is the projected average-adjusted action-value function and can be written as

L̂µ(i, x, a) = Ĥµ(a, (a↘ ω, s)) + Cµ(i, x, a) (4.11)

Equations 4.7 to 4.11 are the decomposition equations under a hierarchical policy

µ. These equations recursively decompose the hierarchical average-adjusted value func-

tion for the root, Hµ(0, x), into the projected average-adjusted value functions Ĥµ for

59

the individual subtasks M1, . . . ,Mm−1 in the hierarchy,3 the individual completion func-

tions Cµ(i, x, a) for i = 1, . . . ,m − 1, and the individual external completion functions

CEµ(i, x, a) for i = 1, . . . ,m−1. The fundamental quantities that must be stored to repre-

sent the hierarchical average-adjusted value function decomposition are the C and the CE

values for all non-primitive subtasks, the Ĥ values for all primitive actions, and the global

gain gµ. The decomposition equations can be used to obtain update equations for Ĥ , C,

and CE in this hierarchically optimal average reward model. Pseudo-code for the discrete-

time hierarchically optimal average reward RL (HAR) algorithm is shown in Algorithm

1. In this algorithm, primitive subtasks update their projected average-adjusted value func-

tions Ĥ (Line 5), while non-primitive subtasks update both their completion functions C

(Line 17), and external completion functions CE (Lines 19 and 21). We store only one

global gain g and update it after each non-random primitive action (Line 7). In the update

formula on Line 17, the projected average-adjusted value function Ĥ(a, (a↘ ω, s)) is the

reward of executing action a in state (ω, s) under subtask Mi and is recursively calculated

by subtask Ma and its descendants using Equations 4.10 and 4.11. Notice that the hierar-

chical average-adjusted action-value function L on Lines 15 and 19 is recursively evaluated

using Equation 4.7.

This algorithm can be easily extended to continuous-time by changing the update for-

mulas for Ĥ and g on Lines 5 and 7 as

Ĥt+1(i, x)←[1− αt(i)]Ĥt(i, x) + αt(i) [k(s, i) + r(s, i)τ(s, i)− gtτ(s, i)]

gt+1 =
rt+1

tt+1

=
rt + k(s, i) + r(s, i)τ(s, i)

tt + τ(s, i)

3m is the total number of subtasks in the hierarchy.

60

Algorithm 1 Discrete-time hierarchically optimal average reward RL (HAR) algorithm.
1: Function HAR(Task Mi, State x = (ω, s))
2: let Seq ={}be the sequence of states visited while executing subtask Mi

3: if Mi is a primitive action then
4: execute action i in state x, observe state x′ = (ω, s′) and reward r(s, i)
5: Ĥt+1(i, x)← [1− αt(i)]Ĥt(i, x) + αt(i)[r(s, i)− gt]
6: if Mi and all its ancestors are non-random actions then
7: update the global gain gt+1 = rt+1

nt+1
= rt+r(s,i)

nt+1

8: end if
9: push state x1 = (ω ↗ i, s) into the beginning of Seq

10: else /* Mi is a non-primitive subtask */
11: while Mi has not terminated do
12: choose action (subtask) a according to the current exploration policy µi(x)
13: let ChildSeq=HAR(Ma, (a ↘ ω, s)), where ChildSeq is the sequence of states

visited while executing subtask Ma

14: observe result state x′ = (ω, s′)
15: let a∗ = arg maxa′∈Ai(s′)

Lt(i, x
′, a′)

16: for each x = (ω, s) in ChildSeq from the beginning do
17: Ct+1(i, x, a)← [1−αt(i)]Ct(i, x, a)+αt(i)

[

Ĥt(a
∗, (a∗ ↘ ω, s′)) + Ct(i, x

′, a∗)
]

18: if s′ ∈ Ti (s′ belongs to Ti the set of terminal states of subtask Mi) then
19: CEt+1(i, x, a)← [1−αt(i)]CEt(i, x, a)+αt(i)Lt(Parent(i), (ω ↗ i, s′), a∗)

20: else /* s′ is not a terminal state of subtask Mi */
21: CEt+1(i, x, a)← [1− αt(i)]CEt(i, x, a) + αt(i)CEt(i, x

′, a∗)

22: end if
23: replace state x = (ω, s) with (ω ↗ i, s) in the ChildSeq
24: end for
25: append ChildSeq onto the front of Seq
26: x = x′

27: end while
28: end if
29: return Seq
30: end HAR

61

where τ(s, i) is the time elapsing between state s and the next state, k(s, i) is the fixed

reward of taking action i in state s, and r(s, i) is the reward rate for the time between state

s and the next state.

4.2 Recursively Optimal Average Reward RL

In the previous section, we introduced discrete-time and continuous-time hierarchically

optimal average reward RL (HAR) algorithms. In HAR algorithm, we define only a global

gain for the entire hierarchy to guarantee hierarchical optimality for the overall task. The

HAR algorithm finds a hierarchical policy that has the highest global gain among all poli-

cies consistent with the given hierarchy. However, there may exist subtasks where their

policies must be locally suboptimal so that the overall policy becomes optimal. Recursive

optimality is a kind of local optimality in which the policy at each node is optimal given

the policies of its children (See Section 3.3). Thus, the goal at root is to maximize its gain

given the policies for its descendants. The reason to seek recursive optimality rather than

hierarchical optimality is that recursive optimality makes it possible to solve each subtask

without reference to the context in which it is executed, and therefore the learned subtask

can be reused by other hierarchies. This leaves open the question of what local optimal-

ity criterion should be used for each subtask in a recursively optimal average reward RL

setting.

One approach pursued by Seri and Tadepalli (2002) is to optimize subtasks using their

expected total average-adjusted reward with respect to global gain. Seri and Tadepalli

introduced a model-based algorithm called Hierarchical H-Learning (HH-Learning). For

every subtask, this algorithm learns the action model and maximizes the expected total

average-adjusted reward with respect to global gain at each state. In this method, the

projected average-adjusted value functions with respect to global gain satisfy the following

equations:

62

Ĥµ(i, s) =

r(s, i)− gµ if Mi is a primitive action,

0 if s is a terminal state of subtask Mi,

maxa∈Ai(s)[Ĥ
µ(a, s) +

∑

N,s′∈Si
Pµ

i (s′, N |s, a)Ĥµ(i, s′)] otherwise.

(4.12)

The first term of the last part of Equation 4.12, Ĥµ(a, s), denotes the expected total average-

adjusted reward during the execution of subtask Ma (the projected average adjusted value

function of subtask Ma), and the second term denotes the expected total average-adjusted

reward from then on until the completion of subtask Mi (the completion function of sub-

task Mi after execution of subtask Ma). Since the expected average-adjusted reward after

execution of subtask Mi is not a component of the average-adjusted value function of sub-

task Mi, this approach does not necessarily allow for hierarchical optimality, as we will

show in the experiments of Section 4.3. Moreover, the policy learned for each subtask

using this approach is not context free, since each subtask maximizes its average-adjusted

reward with respect to global gain. However, Seri and Tadepalli (2002) showed that this

method finds the hierarchically optimal average reward policy when the result distribution

invariance (RDI) condition holds.

Definition 4.1 (Result Distribution Invariance (RDI) Condition): For all subtasks Mi

and states s in the hierarchy, the distribution of states reached after the execution of any

subtask Ma (Ma is one of Mi’s children) is independent of the policy of subtask Ma, µa,

and the policies of Ma’s descendants, i.e., P µ
i (s′|s, a) = Pi(s

′|s, a). �

In other words, states reached after the execution of a subtask cannot be changed by al-

tering the policies of the subtask and its descendants. Note that the RDI condition does not

hold for every problem, and therefore the HH-Learning algorithm is neither hierarchically

nor recursively optimal in general.

63

Another approach is to formulate subtasks as continuing average reward problems,

where the goal at each subtask is to maximize its gain given the policies of its children

(Ghavamzadeh and Mahadevan, 2001). We first describe this approach in detail in Sections

4.2.1 and 4.2.2. In Section 4.2.3, we use this method to find recursively optimal average

reward policies, and present discrete-time and continuous-time recursively optimal aver-

age reward RL (RAR) algorithms. Finally in Section 4.2.4, we investigate the conditions

under which the policy learned by the RAR algorithm at each subtask is independent of the

context in which it is executed and therefore can be reused by other hierarchies.

4.2.1 Root Task Formulation

In our approach, we consider those problems for which Assumption 4.1 (Continuing

Root Task) and the following assumption hold.

Assumption 4.3 (Root Task Recurrence): There exists a state s∗0 ∈ S0 such that, for

every hierarchical policy µ and for every state s ∈ S0, we have4

|S0|
∑

N=1

Fµ
0 (s∗0, N |s) > 0

where F µ
0 is the multi-step abstract transition probability function of root under the hierar-

chical policy µ described in Section 3.2, and |S0| is the number of states in the state space

of root. �

Assumption 4.3 is equivalent to assuming that the underlying Markov chain at root

for every hierarchical policy µ has a single recurrent class, and state s∗0 is a recurrent state.

The recurrent state s∗0 can be a terminal state of any of root’s children. If Assumptions 4.1

4Notice that the root task is represented as subtask M0 in the HRL framework described in Chapter 3. So
we use index 0 to represent every component of the root task.

64

and 4.3 hold, the gain at the root task under the hierarchical policy µ, gµ
0 , is well defined

for every hierarchical policy µ and does not depend on the initial state. When the state

space at root is finite or countable, the average reward or gain at root can be written as

gµ
0 =

m̄
µ
0 rµ

0 (s, µ0(s))

m̄
µ
0 yµ

0 (s, µ0(s))

where rµ
0 (s, µ0(s)) and yµ

0 (s, µ0(s)) denote the expected total reward and the expected

number of time steps between two decision epochs at root, given that the system occupies

state s at the first decision epoch and the agent chooses its actions according to the hier-

archical policy µ. The terms m
µ
0 and m̄

µ
0 = limN→∞

1
N

∑N−1
t=0 (mµ

0)t are the transition

probability matrix and the limiting matrix of the embedded Markov chain at root for the

hierarchical policy µ respectively. The transition probability m
µ
0 is obtained by marginal-

izing the multi-step abstract transition probability F µ
0 . The term m

µ
0 (s′|s, µ0(s)) denotes

the probability that the SMDP at root occupies state s′ at the next decision epoch, given

that the agent chooses action µ0(s) in state s at the current decision epoch and follows the

hierarchical policy µ.

4.2.2 Subtask Formulation

In Section 4.2.1, we described the average reward formulation of the root task of a hi-

erarchical decomposition. In this section, we illustrate how we formulate all other subtasks

in a hierarchy as average reward problems. From now on in this chapter, we use subtask to

refer to non-primitive subtasks in a hierarchy except root.

In the HRL methods, we typically assume that every time a subtask Mi is executed, it

starts at one of its initial states (∈ Ii) and terminates at one of its terminal states (∈ Ti) after

a finite number of steps. Therefore, we can make the following assumption for every sub-

task Mi in a hierarchy. Under this assumption, each subtask can be considered an episodic

problem and each instantiation of a subtask can be considered an episode.

65

Assumption 4.4 (Subtask Termination): There exists a dummy state s∗i ∈ Si such that,

for every action a ∈ Ai and every terminal state sTi
, we have

ri(sTi
, a) = 0 and Pi(s

∗
i , 1|sTi

, a) = 1

and for all hierarchical stationary policies µ and non-terminal states s ∈ Si, we have

Fµ
i (s∗i , 1|s) = 0

and finally for all states s ∈ Si, we have

Fµ
i (s∗i , N |s) > 0

where F µ
i is the multi-step abstract transition probability function of subtask Mi under the

hierarchical policy µ described in Section 3.2, and N = |Si| is the number of states in the

state space of subtask Mi. �

Although subtasks are episodic problems, when the overall task (root of the hierarchy)

is continuing as we assumed in this chapter (Assumption 4.1), they are executed infinite

number of times, and therefore can be modeled as continuing problems using the model

described in Figure 4.1. In this model, each subtask Mi terminates at one of its terminal

states sTi
∈ Ti. All terminal states transit with probability 1 and reward 0 to a dummy

state s∗i . This is a dummy transition and does not add a time-step to the cycle of subtask

Mi and therefore is not taken into consideration when the average reward of subtask Mi is

calculated. Finally, the dummy state s∗i transits with reward zero to one of the initial states

(∈ Ii) of subtask Mi upon the next instantiation of Mi. It is important for the validity of

this model to fix the value of dummy states to zero.

66

*s

Terminal States Initial States

n

1

.

.

.

r = 0 , F = 1

r = 0 , F = 1

.

.

.

1

n

1 n
. . .

Set of
Ti

Set of

iI

r = 0 , I = I

r = 0 , I = I

i

I + + I = 1

Figure 4.1. This figure shows how each subtask in a hierarchical decomposition of a con-
tinuing problem can be modeled as a continuing task.

Under this model, for every hierarchical policy µ, each subtask Mi in the hierarchy can

be modeled using a new MDP with abstract transition probabilities and rewards

Fµ
Ii

(s′, 1|s) =

Fµ
i (s′, 1|s) s 6= s∗i ,

Ii(s
′) s = s∗i .

(4.13)

rµ
Ii
(s, a) = rµ

i (s, a)

where Ii(s) is the probability that subtask Mi starts at state s.

Let Fµ
Ii

be the set of all abstract transition probability functions F µ
Ii

. We have the fol-

lowing result for subtask Mi.

Lemma 4.1: Let Assumption 4.4 (Subtask Termination) hold. Then for every F µ
Ii
∈ Fµ

Ii

and every state s ∈ Si, we have
∑|Si|

N=1 Fµ
Ii

(s∗i , N |s) > 0.5 �

Lemma 4.1 is equivalent to assuming that for every subtask Mi in the hierarchy, the un-

5This lemma is a restatement of the Lemma 5 on page 34 of Peter Marbach’s thesis (Marbach, 1998).

67

derlying Markov chain for every hierarchical policy µ has a single recurrent class and state

s∗i is its recurrent state. Under this model, the gain of subtask Mi under the hierarchical

policy µ, gµ
i , is well defined for every hierarchical policy µ and does not depend on the

initial state. When the state space of subtask Mi is finite or countable, the gain of subtask

Mi can be written as

gµ
i =

m̄
µ
Ii
rµ
Ii
(s, µi(s))

m̄
µ
Ii
yµ

Ii
(s, µi(s))

where rµ
Ii
(s, µi(s)) and yµ

Ii
(s, µi(s)) are equal to rµ

i (s, µi(s)) and yµ
i (s, µi(s)), and denote

the expected total reward and the expected number of time steps between two decision

epochs of subtask Mi, given that the system occupies state s at the first decision epoch

and the agent chooses its actions according to the hierarchical policy µ. The terms m
µ
Ii

and m̄
µ
Ii

= limN→∞
1
N

∑N−1
t=0 (mµ

Ii
)t are the transition probability matrix and the limiting

matrix of the Markov chain6 at subtask Mi for the hierarchical policy µ respectively. The

transition probability m
µ
Ii

is obtained by marginalizing the multi-step abstract transition

probability F µ
Ii

.

4.2.3 Recursively Optimal Average Reward RL Algorithm

In this section, we present discrete-time and continuous-time recursively optimal av-

erage reward RL (RAR) algorithms using the formulation described in Sections 4.2.1 and

4.2.2. We consider problems for which Assumptions 4.1, 4.3, and 4.4 (Continuing Root

Task, Root Task Recurrence, and Subtask Termination) hold, root is modeled as an average

reward problem as described in Section 4.2.1, and every other non-primitive subtask in the

hierarchy is modeled as an average reward problem using the model described in Section

4.2.2. Under these assumptions, the average reward for every non-primitive subtask in the

hierarchy including root is well defined for every hierarchical policy and does not vary with

6This Markov chain corresponds to the MDP at subtask Mi defined by Equation 4.13, not the original
MDP at subtask Mi defined by F

µ
i and r

µ
i .

68

initial state. Since we are interested in finding a recursively optimal average reward policy,

we do not need to include the contents of the Task-Stack as a part of the state space of the

problem. We also replace projected value and action-value functions in the hierarchical

model of Chapter 3 with projected average-adjusted value and projected average-adjusted

action-value functions described in Sections 2.2.3 and 2.3.2.

We show how the overall projected average-adjusted value function Ĥµ(0, s) is decom-

posed into a collection of projected average-adjusted value functions of individual subtasks

Ĥµ(i, s) for i = 1, . . . ,m−1, in the RAR algorithm. The projected average-adjusted value

function of hierarchical policy µ on subtask Mi is the average-adjusted (with respect to the

local gain gµ
i) sum of rewards earned by following policy µi and the policies of all descen-

dants of subtask Mi starting in state s until subtask Mi terminates. Now let us suppose that

the first action chosen by µi is invoked and executed for a number of primitive steps N and

terminates in state s′ according to multi-step transition probability P µ
i (s′, N |s, µi(s)). We

can write the projected average-adjusted value function in the form of a Bellman equation

as

Ĥµ(i, s) = rµ
i (s, µi(s))− gµ

i yµ
i (s, µi(s)) +

∑

N,s′∈Si

Pµ
i (s′, N |s, µi(s))Ĥ

µ(i, s′) (4.14)

Since the term rµ
i (s, µi(s)) is the expected total reward between two decision epochs

of subtask Mi, given that the system occupies state s at the first decision epoch, the agent

chooses action µi(s), and the number of time steps until the next decision epoch is defined

by yµ
i (s, µi(s)), we have

rµ
i (s, µi(s)) =

V̂ µ(µi(s), s) = Ĥµ(µi(s), s) + gµ

µi(s)
yµ

i (s, µi(s))

if Mi is a non-primitive subtask,

V̂ µ(µi(s), s)

if Mi is a primitive action.

69

By replacing rµ
i (s, µi(s)) from the above expression, Equation 4.14 can be written as

Ĥµ(i, s) =

Ĥµ(µi(s), s)− (gµ
i − g

µ

µi(s)
)yµ

i (s, µi(s)) +
∑

N,s′∈Si
P

µ
i (s′, N |s, µi(s))Ĥ

µ(i, s′)

if Mi is a non-primitive subtask,

V̂ µ(µi(s), s)− g
µ
i y

µ
i (s, µi(s)) +

∑

N,s′∈Si
P

µ
i (s′, N |s, µi(s))Ĥ

µ(i, s′)

if Mi is a primitive action.
(4.15)

We can re-state Equations 4.15 for projected action-value function as follows:

L̂µ(i, s, a) =

Ĥµ(a, s)− (gµ
i − g

µ
a)yµ

i (s, a) +
∑

N,s′∈Si
P

µ
i (s′, N |s, a)L̂µ(i, s′, µi(s

′))

if Mi is a non-primitive subtask,

V̂ µ(a, s)− g
µ
i y

µ
i (s, a) +

∑

N,s′∈Si
P

µ
i (s′, N |s, a)L̂µ(i, s′, µi(s

′))

if Mi is a primitive action.
(4.16)

In the above equation, when Mi is a non-primitive subtask, the term

−(gµ
i − gµ

a)yµ
i (s, a) +

∑

N,s′∈Si

Pµ
i (s′, N |s, a)L̂µ(i, s′, µi(s

′))

and when Mi is a primitive action, the term

−gµ
i yµ

i (s, a) +
∑

N,s′∈Si

Pµ
i (s′, N |s, a)L̂µ(i, s′, µi(s

′))

denote the average-adjusted reward of completing subtask Mi after executing action a in

state s. We call this term completion function after Dietterich (2000), and denote it by

70

Cµ(i, s, a). With this definition, we can express the average-adjusted action-value function

L̂µ recursively as

L̂µ(i, s, a) =

Ĥµ(a, s) + Cµ(i, s, a) if Mi is a non-primitive subtask,

V̂ µ(a, s) + Cµ(i, s, a) if Mi is a primitive action.
(4.17)

where

Cµ(i, s, a) =

−(gµ
i − g

µ
a)yµ

i (s, a) +
∑

N,s′∈Si
P

µ
i (s′, N |s, a)L̂µ(i, s′, µi(s

′))

if Mi is a non-primitive subtask,

−g
µ
i y

µ
i (s, a) +

∑

N,s′∈Si
P

µ
i (s′, N |s, a)L̂µ(i, s′, µi(s

′))

if Mi is a primitive action.

(4.18)

and

Ĥµ(i, s) = L̂µ(i, s, µi(s)) (4.19)

when Mi is a non-primitive subtask.

Equations 4.15 to 4.19 are the decomposition equations for projected average-adjusted

value and projected average-adjusted action-value functions. They can be used to obtain up-

date formulas for Ĥ and C in this recursively optimal average reward model. Pseudo-code

for the discrete-time recursively optimal average reward RL (RAR) algorithm is shown in

Algorithm 2. In this algorithm, a gain is defined for every non-primitive subtask in the

hierarchy and this gain is updated every time a subtask is non-randomly chosen. Prim-

itive subtasks store their projected value functions, and update them using the equation

on Line 5. Non-primitive subtasks store their completion functions and gains, and update

them using equations on Lines 17, 19, and 23. The projected average-adjusted action-value

function L̂ on Lines 12, 17, and 19 are recursively calculated using Equations 4.17 to 4.19.

71

Algorithm 2 Discrete-time recursively optimal average reward RL (RAR) algorithm.
1: Function RAR(Task Mi, State s)
2: let Seq ={}be the sequence of (state visited, reward) while executing subtask Mi

3: if Mi is a primitive action then
4: execute action i in state s, observe state s′ and reward r(s, i)
5: V̂t+1(i, s)← [1− αt(i)]V̂t(i, s) + αt(i)r(s, i)
6: push (state s, reward r(s, i)) into the beginning of Seq
7: else /* Mi is a non-primitive subtask */
8: while Mi has not terminated do
9: choose action (subtask) a according to the current exploration policy µi(s)

10: let ChildSeq=RAR(Ma, s), where ChildSeq is the sequence of (state visited, re-
ward) while executing subtask Ma

11: observe result state s′

12: let a∗ = arg maxa′∈Ai(s′)
L̂t(i, s

′, a′)
13: let N = 0; ρ = 0;
14: for each (s, r) in ChildSeq from the beginning do
15: N = N + 1; ρ = ρ + r;
16: if a is a primitive action then
17: Ct+1(i, s, a)← [1− αt(i)]Ct(i, s, a) + αt(i)[L̂t(i, s

′, a∗)− gt(i)N]

18: else /* Ma is a non-primitive subtask */
19: Ct+1(i, s, a)← [1−αt(i)]Ct(i, s, a)+αt(i){L̂t(i, s

′, a∗)−[gt(i)−gt(a)]N}
20: end if
21: end for
22: if Ma and all its ancestors are non-random actions then
23: update gain of subtask Mi gt+1(i) = rt+1(i)

nt+1(i)
= rt(i)+ρ

nt(i)+N

24: end if
25: append ChildSeq onto the front of Seq
26: s = s′

27: end while
28: end if
29: return Seq
30: end RAR

72

This algorithm can be easily extended to continuous-time. In the continuous-time ver-

sion of the RAR algorithm, in addition to visited state and reward, we need to push the

execution time of primitive actions τ into the Seq. Therefore N = N + 1 on Line 15 of the

algorithm is replaced by T = T + τ . We also need to modify the update formulas for V̂ ,

C, and gi on Lines 5, 17, 19, and 23 as

V̂t+1(i, s)←[1− αt(i)]Ĥt(i, s) + αt(i) [k(s, i) + r(s, i)τ(s, i)]

Ct+1(i, s, a)← [1− αt(i)]Ct(i, s, a) + αt(i)[L̂t(i, s
′, a∗)− gt(i)T]

Ct+1(i, s, a)← [1− αt(i)]Ct(i, s, a) + αt(i)[L̂t(i, s
′, a∗)− (gt(i)− gt(a))T]

gt+1(i) =
rt+1(i)

tt+1(i)
=

rt(i) + ρ

tt(i) + T

where τ(s, i) is the time elapsing between state s and the next state, k(s, i) is the fixed

reward of taking action i in state s, and r(s, i) is the reward rate for the time between state

s and the next state.

4.2.4 Optimality of the RAR Algorithm

In this section, we investigate the optimality achieved by the RAR algorithm. In the

RAR algorithm, since the expected average-adjusted reward after execution of subtask Mi

is not a component of the average-adjusted value function of subtask Mi, the algorithm fails

to find a hierarchically optimal average reward policy in general, as it has been discussed

in (Seri and Tadepalli, 2002) and we will demonstrate it in the experiments of Section 4.3.

To achieve recursive optimality, the policy learned for each subtask must be context

free, that is, each subtask maximizes its local gain given the policies of its descendants. In

73

RAR algorithm, although each subtask maximizes its local gain given the policies of its

descendants, the policy learned for each subtask is not necessarily context free, and as a

result the algorithm does not find a recursively optimal average reward policy in general.

The reason for that is, the local gain gi for each subtask Mi does not depend only on the

policies of its descendants. The local gain gi is the gain of the SMDP defined by Equation

4.13 and therefore depends on the initial state distribution Ii(s). The initial state distribu-

tion Ii(s) depends not only on the policies of Mi’s descendants, but also on the policies of

its parents, which makes the local gain gi context dependent. However, the algorithm finds

a recursively optimal average reward policy when the initial distribution invariance (IDI)

condition holds. In this case, the policy learned by this method at each subtask is indepen-

dent of the context in which it is executed and therefore can be reused by other hierarchies.

Definition 4.2 (Initial Distribution Invariance (IDI) Condition): The initial state dis-

tribution for each non-primitive subtask in the hierarchy is independent of the policies of

its parents. �

In other words, the initial state distribution for each non-primitive subtask cannot be changed

by altering the policies of its parents. One special case that satisfies the IDI condition is

when each non-primitive subtask in the hierarchy has only one initiation state, |Ii| = 1 for

i = 1, . . . ,m− 1, and Mi is a non-primitive subtask.

4.3 Experimental Results

The goal of this section is to demonstrate the efficacy of the algorithms proposed in

Sections 4.1 and 4.2. We show the type of optimality that they converge to as well as their

performance and speed comparing to other algorithms. We conduct two sets of experiments

in this section. In Section 4.3.1, we apply five HRL algorithms to a simple discrete-time

AGV scheduling problem. The advantage of using this simple domain is that it clearly

74

demonstrates the difference between the optimality criteria achieved by these algorithms.

Then we turn to a more complex AGV scheduling task in Section 4.3.2. In this section, we

model an AGV scheduling task as discrete time and continuous time problems and apply

HAR and RAR algorithms as well as a flat average reward RL algorithm to both models.

4.3.1 A Small AGV Scheduling Problem

In this section, we apply the discrete-time hierarchically optimal average reward RL

(HAR) algorithm described in Section 4.1, the discrete-time recursively optimal average

reward RL (RAR) algorithm described in Section 4.2, and HH-Learning, the algorithm

proposed by Seri and Tadepalli (2002), to a small AGV scheduling task. We also test

MAXQ-Q, the recursively optimal discounted reward HRL algorithm proposed by Diet-

terich (2000), and a hierarchically optimal discounted reward RL algorithm (HDR) on

this task. The HDR algorithm is an extension of the MAXQ-Q using the three-part value

function decomposition proposed by Andre and Russell (2002) described in Chapter 3.

These experimental results clearly demonstrate the difference between the optimality crite-

ria achieved by these algorithms.

A small AGV domain is depicted in Figure 4.2. In this domain there are two machines

M1 and M2 that produce parts to be delivered to corresponding destination stations G1

and G2. Since machines and destination stations are in two different rooms, the AGV has

to pass one of the two doors D1 and D2 every time it goes from one room to another.

Part 1 is more important than part 2, therefore the AGV gets a reward of 20 when part 1

is delivered to destination G1 and a reward of 1 when part 2 is delivered to destination

G2. The AGV receives a reward of -1 for all other actions. This task is deterministic and

the state variables are AGV location and AGV status (empty, carry part 1 or carry part 2),

which is total of 26 × 3 = 78 states. In all experiments, we use the task graph shown in

Figure 4.2 and set the discount factor to 0.99 for the discounted reward algorithms. We tried

several discounting factors and 0.99 yielded the best performance. Using this task graph,

75

hierarchical and recursive optimal policies are different. Since delivering part 1 has more

reward than part 2, the hierarchically optimal policy is one in which the AGV always serves

machine M1. In the recursively optimal policy, the AGV switches from serving machine

M1 to serving machine M2 and vice versa. In this policy, the AGV goes to machine M1,

picks up a part of type 1, goes to goal G1 via door D1, drops the part there, then passes

through door D2, goes to machine M2, picks up a part of type 2, goes to goal G2 via door

D2 and then switches again to machine M1 and so on so forth.

G2M1

M2

D2

D1

G1

Go to Machine Go to Door

Root

Go to Goal

North West South EastNorth NorthWest South SouthEast

M1: Machine 1 M2: Machine 2 D1: Door 1 D2: Door 2 G1: Goal 1 G2: Goal 2

Figure 4.2. A small AGV scheduling task and its associated task graph.

Among the algorithms we applied to this task, the hierarchically optimal average reward

RL (HAR) and the hierarchically optimal discounted reward RL (HDR) algorithms find the

hierarchically optimal policy, where the other algorithms only learn the recursively optimal

policy. Figure 4.3 demonstrates the throughput of the system for the above algorithms. In

this figure, the throughput of the system is the number of parts deposited at the destination

stations weighted by their reward (part1 × 20 + part2 × 1) in 10, 000 time steps. Each

experiment was conducted ten times and the results were averaged.

4.3.2 AGV Scheduling Problem (Discrete and Continuous Time Models)

In this section, we describe two sets of experiments on an AGV scheduling problem

shown in Figure 4.4. M1 to M3 are workstations in this environment. Parts of type i have

76

0 2 4 6 8 10 12

x 10
4

2000

4000

6000

8000

10000

12000

Time step since start of simulation

T
h

ro
u

g
h

p
u

t
o

f
th

e
sy

st
em

RAR
HAR
HH−Learning
MAXQ−Q
HDR

Figure 4.3. This plot shows that HDR and HAR algorithms (the two curves at the top)
learn the hierarchically optimal policy while RAR, MAXQ-Q, and HH-Learning (the three
curves at the bottom) only find the recursively optimal policy for the small AGV scheduling
task.

to be carried to the drop-off station at workstation i (Di), and the assembled parts brought

back from pick-up stations of workstations (Pi’s) to the warehouse. The AGV travel is

unidirectional as the arrows show. We model this AGV scheduling task using both discrete-

time and continuous-time models and demonstrate the performance and speed of three HRL

algorithms: hierarchically optimal average reward RL (HAR), recursively optimal average

reward RL (RAR), and hierarchically optimal discounted reward RL (HDR) as well as a

non-hierarchical average reward algorithm in this problem. In both experiments, we use

the task graph shown in Figure 4.5 for the AGV scheduling problem, and discount factors

0.9 and 0.95 for discounted reward algorithms. Using discount factor 0.95 yielded better

performance in both experiments.

The state of the environment consists of the number of parts in the pick-up and drop-off

stations of each machine, and whether the warehouse contains parts of each of the three

types. In addition, agent keeps track of its own location and status as a part of its state

77

P1

P2

P3

D1

D2

D3
Load

Unload

Assemblies

Parts

M1M3

M2

MachineM:

D:

P:

Drop off Buffer

Pick up Buffer

Warehouse

Figure 4.4. An AGV scheduling task. An AGV agent (not shown) carries raw materials
and finished parts between machines and warehouse.

NavPick iNavPut i

NavPut i : Navigation to Dropoff Station i

: Navigation to Pickup Station iNavPick i

DM i : Deliver Material to Station i

DA : Deliver Assembly from Station i i

NavLoad : Navigation to Loading Deck

NavUnload : Navigation to Unload Deck

Root

DA2DA1

Nav

Forward RightLeft

.

.NavLoad Load Put Pick Unload

DM1 DM2

NavUnload

Figure 4.5. Task graph for the AGV scheduling task.

78

space. Thus in the flat case, state space consists of 33 locations, 6 buffers of size 2, 7

possible states of the AGV (carrying Part1, . . . , carrying Assembly1, . . . , empty), and 2

values for each part in the warehouse, i.e., 33 × 36 × 7 × 23 = 1, 347, 192 states. State

abstraction helps in reducing the state space considerably. Only the relevant state variables

are used while storing the value functions in each node of the task graph. For example, for

the Navigation subtask, only the location state variable is relevant and this subtask can be

learned with only 33 values. Hence for each of the high-level subtasks DM1, . . . , DM3,

the number of relevant states would be 33×7×3×2 = 1, 386, and for each of the high-level

subtasks DA1, . . . , DA3, the number of relevant states would be 33 × 7 × 3 = 693. This

state abstraction gives us a compact way of representing the value functions and speeds up

the algorithm.

The discrete-time experimental results were generated with the following model param-

eters. The inter-arrival time for parts at the warehouse is uniformly distributed with a mean

of 12 time steps and variance of 2 time steps. The percentage of Part1, Part2, and Part3 in

the part arrival process are 40, 35, and 25 respectively. The time required for assembling the

various parts are Poisson random variables with means 6, 10, and 12 time steps for Part1,

Part2, and Part3 respectively, and variance 2 time steps. Table 4.1 shows the parameters of

the discrete-time model.

Parameter Distribution Mean (steps) Variance (steps)
Assembly Time for Part1 Poisson 6 2
Assembly Time for Part2 Poisson 10 2
Assembly Time for Part3 Poisson 12 2

Inter-Arrival Time for Parts Uniform 12 2

Table 4.1. Parameters of the Discrete-Time Model

The continuous-time experimental results were generated with the following model

parameters. The time required for execution of each primitive action is a normal random

variable with mean 10 seconds and variance 2 seconds. The inter-arrival time for parts

at the warehouse is uniformly distributed with a mean of 100 seconds and variance of 20

79

seconds. The percentage of Part1, Part2, and Part3 in the part arrival process are 40, 35,

and 25 respectively. The time required for assembling the various parts are normal random

variables with means 100, 120, and 180 seconds for Part1, Part2, and Part3 respectively,

and variance 20 seconds. Table 4.2 contains the parameters of the continuous-time model.

In both cases, each experiment was conducted five times and the results were averaged.

Parameter Type of Distribution Mean (sec) Variance (sec)
Execution Time for Primitive Actions Normal 10 2

Assembly Time for Part1 Normal 100 20
Assembly Time for Part2 Normal 120 20
Assembly Time for Part3 Normal 180 20

Inter-Arrival Time for Parts Uniform 100 20

Table 4.2. Parameters of the Continuous-Time Model

Figure 4.6 compares the discrete-time hierarchically optimal average reward RL (HAR)

algorithm described in Section 4.1 with the discrete-time discounted reward hierarchi-

cally optimal (HDR) algorithm, and the discrete-time recursively optimal average reward

RL (RAR) algorithm illustrated in Section 4.2. The graph shows the improved perfor-

mance of the HAR algorithm. This figure also shows that the HAR algorithm converges

faster to the same throughput as the non-hierarchical average reward algorithm. The non-

hierarchical average reward algorithm used in this experiment is relative value iteration

(RVI) Q-learning (Abounadi et al., 2001). The difference in convergence speed between

flat and hierarchical algorithms becomes more significant as we increase the number of

states.

Figure 4.7 compares the continuous-time hierarchically optimal average reward RL

(HAR) algorithm described in Section 4.1 with the continuous-time hierarchically opti-

mal discounted reward RL (HDR) algorithm, and the continuous-time recursively optimal

average reward RL (RAR) algorithm illustrated in Section 4.2. The graph shows that the

HAR algorithm converges to the same performance as the discounted reward HDR algo-

rithm, and both have better performance than the RAR (recursively optimal average reward)

80

0 0.5 1 1.5 2

x 10
6

1500

2000

2500

3000

3500

4000

4500

Time step since start of simulation

T
h

ro
u

g
h

p
u

t
o

f
th

e
sy

st
em

Discrete−time HAR
Discrete−time HDR
Discrete−time RAR
Discrete−time Non−Hierarchical AR (RVI Q−Learning)

Figure 4.6. This plot shows that the discrete-time HAR algorithm performs better than
the discounted reward HDR and RAR algorithms on the AGV scheduling task. It also
demonstrates the faster convergence of the HAR algorithm comparing to RVI Q-learning,
the non-hierarchical average reward algorithm.

algorithm. This figure also shows that the HAR algorithm converges faster to the same

throughput as the non-hierarchical average reward algorithm. The non-hierarchical aver-

age reward algorithm used in this experiment is a continuous-time version of the relative

value iteration (RVI) Q-learning (Abounadi et al., 2001). The difference in convergence

speed between flat and hierarchical algorithms becomes more significant as we increase

the number of states.

These results are consistent with the hypothesis that the average reward framework

is superior to the discounted framework for learning continuing tasks, such as queuing,

scheduling, and flexible manufacturing. Moreover, average reward methods do not need

careful tuning of the discount factor to find gain-optimal policies.

81

0 0.5 1 1.5 2 2.5 3

x 10
6

0

50

100

150

200

250

300

350

400

Time step since start of simulation (sec)

T
h

ro
u

g
h

p
u

t
o

f
th

e
sy

st
em

Continuous−time HAR
Continuous−time HDR
Continuous−time RAR
Continuous−time Non−Hierarchical AR (RVI Q−Learning)

Figure 4.7. This plot shows that the continuous-time HAR converges to the same perfor-
mance as the discounted reward HDR, and both outperform the recursively optimal aver-
age reward (RAR) algorithm on the AGV scheduling task. It also demonstrates the faster
convergence of the HAR algorithm comparing to RVI Q-learning, the flat average reward
algorithm.

82

4.4 Summary and Future Work

This chapter presents new discrete-time and continuous-time hierarchically optimal av-

erage reward RL (HAR) and recursively optimal average reward RL (RAR) algorithms ap-

plicable to continuing tasks, including manufacturing, scheduling, queuing, and inventory

control. These algorithms are based on the average-reward SMDP model, which has been

shown to be more appropriate for a wide class of continuing tasks than the better stud-

ied discounted reward SMDP model. Hierarchically optimal average reward RL (HAR)

algorithms aim to find a hierarchical policy within the space of policies defined by the hier-

archical decomposition that maximizes the global gain. In the recursively optimal average

reward RL setting, the formulation of learning algorithms directly depends on the local op-

timality criterion used for each subtask in the hierarchy. The recursively optimal average

reward RL (RAR) algorithms proposed in this chapter treat subtasks as continuing average

reward problems and solve them by maximizing their gain given the policies of their chil-

dren. We investigate the conditions under which the policy learned by the RAR algorithm

at each subtask is independent of the context in which it is executed and therefore can be

reused by other hierarchies. The effectiveness of the proposed algorithms were tested using

two AGV scheduling tasks.

There are a number of directions for future work. An immediate question that arises

is proving the asymptotic convergence of the algorithms to hierarchically optimal policies.

These results should provide some theoretical validity to the proposed algorithms, in ad-

dition to their empirical effectiveness demonstrated in this chapter. Studying other local

optimality criteria for subtasks in the hierarchy is an interesting problem that needs to be

addressed. It helps to develop more effective recursively optimal average reward RL algo-

rithms. It is also obvious that many other manufacturing and robotics problems can benefit

from the algorithms proposed in this chapter.

83

CHAPTER 5

HIERARCHICAL POLICY GRADIENT REINFORCEMENT
LEARNING

We illustrated value function (VF) and policy gradient (PG) solutions for MDPs in

Section 2.2.4. As we described in that section, there are only weak theoretical guarantees on

the performance of the value function reinforcement learning (VFRL) methods on problems

with large discrete or continuous state spaces. We also mentioned that policy gradient

reinforcement learning (PGRL) algorithms have received recent attention as a means to

solve problems with continuous state spaces. They have also shown better performance

when states are hidden. However, they are usually slower than VFRL methods. A possible

solution is to incorporate prior knowledge and decompose the high-dimensional task into

a collection of modules with smaller state spaces and learn these modules in a way to

solve the overall problem. Hierarchical VFRL methods (Parr, 1998; Sutton et al., 1999;

Dietterich, 2000; Andre and Russell, 2001) have been developed using this approach, as an

attempt to scale RL to large state spaces.

In this chapter,1 we propose a family of hierarchical policy gradient reinforcement

learning (HPGRL) algorithms for scaling PGRL methods to problems with continuous (or

large discrete) state and/or action spaces. In HPGRL, non-primitive subtasks are defined

as PGRL problems. Later in this chapter, we accelerate learning in HPGRL algorithms

by formulating high-level subtasks, which usually involve smaller state and finite action

spaces, as VFRL problems, and low-level subtasks with infinite state and/or action spaces

1Most of the work presented in this chapter first appeared in Ghavamzadeh and Mahadevan (2003), “Hi-
erarchical policy gradient algorithms,” Proceedings of the Twentieth International Conference on Machine
Learning, pp. 226-233.

84

as PGRL problems. This idea is similar to the idea used by Morimoto and Doya (2001) to

learn stand-up behavior in a three-link, two-joint robot. We call this family of algorithms

hierarchical hybrid algorithms.

The rest of this chapter is organized as follows. In Section 5.1, we describe how we

define each subtask in a hierarchy as a PGRL problem. In Section 5.2, we introduce a

family of HPGRL algorithms and compare the performance of this family of algorithms

with a hierarchical VFRL algorithm and a flat RL algorithm in a simple taxi-fuel prob-

lem. In Section 5.3, we propose a family of hierarchical hybrid algorithms to accelerate

learning in HPGRL algorithms. We illustrate this family of algorithms and demonstrate its

performance using a continuous state and action ship steering problem. Finally, Section

5.4 summarizes the chapter and discusses some directions for future work.

5.1 Policy Gradient Formulation

In this section, we demonstrate how to define a subtask in a hierarchical task decompo-

sition as a PGRL problem. We formulate a subtask in terms of a parameterized family of

policies and a performance function. We then define a method to estimate the gradient of

the performance function and a routine to update the policy parameters using this gradient.

Our focus in this chapter is on episodic problems, so we assume that the overall task (root

of the hierarchy) is episodic.

5.1.1 Policy Formulation

Each subtask Mi is defined using a set of randomized stationary policies µi(θi) pa-

rameterized in terms of a parameter vector θi ∈ IRK . The term µi(a|s; θi) denotes the

probability of taking action a in state s under the policy corresponding to θ i. These param-

eterized policies for individual subtasks define a set of parameterized hierarchical policies

µ(θ), where θ is the vector of all subtasks’ parameters. For every subtask Mi in the hier-

archy, we make the following assumption about its set of parameterized policies µi(θi).

85

Assumption 5.1: For every state s ∈ Si and every action a ∈ Ai, µi(a|s; θi) as a function

of θi, is bounded and has bounded first and second derivatives. Furthermore, ∇µi(a|s;θi)
µi(a|s;θi)

is

bounded, differentiable, and has bounded first derivatives. �

In HRL methods, we typically assume that every time a subtask Mi is called, it starts

at one of its initial states (∈ Ii) and terminates at one of its terminal states (∈ Ti) after

a finite number of steps. Therefore, we make the following assumption for every subtask

Mi in the hierarchy. Under this assumption, each subtask can be considered an episodic

problem and each instantiation of a subtask can be considered an episode.

Assumption 5.2 (Subtask Termination): We define a dummy state s∗i ∈ Si such that,

for every action a ∈ Ai and every terminal state sTi
, we have

ri(sTi
, a) = 0 and Pi(s

∗
i , 1|sTi

, a) = 1

ri(s
∗
i , a) = 0 and Pi(s

∗
i , 1|s∗i , a) = 1

and for all hierarchical stationary policies µ(θ) and non-terminal states s ∈ Si, we have

F
µ(θ)
i (s∗i , 1|s) = 0

and finally for all states s ∈ Si, we have

F
µ(θ)
i (s∗i , N |s) > 0

where F
µ(θ)
i is the multi-step abstract transition probability function of subtask Mi under

the hierarchical policy µ(θ) described in Section 3.2, and N = |Si| is the number of states

86

in the state space of subtask Mi. �

Under this assumption, all terminal states of subtask Mi transition with probability 1

and reward 0 to the dummy state s∗i and stay there until the next instantiation of subtask Mi

as shown in Figure 5.1. This is a dummy transition and does not add another time-step to

the cycle of subtask Mi.

iInitial States T iTerminal States

.

.

.
.
.
.

. . .

. . . r=0 , p=1

r=0 , p=1

r=0 , p=1s*i

I
Set of Set of

Figure 5.1. This figure shows how we model a subtask as an episodic problem under
Assumption 5.2.

Under this model, for every hierarchical policy µ(θ), we define a new MDP MIi
for

each subtask Mi with abstract transition probabilities and rewards

F
µ(θ)
Ii

(s′, 1|s) =

F
µ(θ)
i (s′, 1|s) s 6= s∗i ,

Ii(s
′) s = s∗i .

(5.1)

rIi
(s, a; θ) = ri(s, a; θ)

where Ii(s) is the probability that subtask Mi starts at state s.

Let Fµ(θ)
Ii

be the set of all abstract transition probability functions F
µ(θ)
Ii

. We have the

following result for subtask Mi.

87

Lemma 5.1: Let Assumptions 5.1 and 5.2 hold. Then for every F
µ(θ)
Ii
∈ Fµ(θ)

Ii
and every

state s ∈ Si, we have
∑|Si|

N=1 F
µ(θ)
Ii

(s∗i , N |s) > 0. �

Lemma 5.1 is equivalent to assuming that the MDP MIi
is recurrent, i.e., the underly-

ing Markov chain for every policy µ(θ) in this MDP has a single recurrent class and the

state s∗i is a recurrent state. In this case, the balance equations

|Si|
∑

s=1

F
µ(θ)
Ii

(s′, 1|s)πi(s) = πi(s
′), ∀s′ ∈ Si , s′ 6= s

|Si|
∑

s=1

πi(s) = 1

have a unique solution π
µ(θ)
Ii

. We refer to π
µ(θ)
Ii

as the steady state probability vector of the

Markov chain with transition probabilities defined by Equation 5.1, and to π
µ(θ)
Ii

(s) as the

steady state probability of being in state s.

5.1.2 Performance Measure Definition and Optimization

We define weighted reward-to-go, χi(θ), as the performance measure of subtask Mi

under the parameterized hierarchical policy µ(θ), and for which Assumption 5.2 holds, as

χi(θ) =
∑

s∈Si

Ii(s)Ji(s; θ)

The term Ji(s; θ) is the reward-to-go of subtask Mi in state s under hierarchical policy

µ(θ) and is defined as

Ji(s; θ) = E

[

T−1
∑

k=0

ri(sk, ak)|s0 = s; θ

]

where T = min{k > 0|sk = s∗i } is the first future time that state s∗i is visited.2

2With the definition of absorbing state s∗i in our model (see Figure 5.1), the reward-to-go of subtask Mi

in state s, Ji(s;θ), is the same as undiscounted projected value function of subtask Mi in state s.

88

In order to obtain an expression for the gradient ∇χi(θ), we use MDP MIi
defined in

Section 5.1.1. Using Lemma 5.1, MDP MIi
is recurrent. For MDP MIi

, let π
µ(θ)
Ii

(s) be

the steady state probability distribution of being in state s at subtask Mi and let EIi
[T |θ]

be the mean recurrence time of subtask Mi, i.e., EIi
[T |θ] = EIi

[T |s0 = s∗i ; θ], under the

hierarchical policy µ(θ). We also define J̃i(s, a; θ)3 as

J̃i(s, a; θ) = EIi

[

T−1
∑

k=0

rIi
(sk, ak)|s0 = s, a0 = a; θ

]

Using recurrent MDP MIi
, we can derive the following proposition which gives an ex-

pression for the gradient of the weighted reward-to-go χi(θ) with respect to the parameter

vector θ.

Proposition 5.1: If Assumptions 5.1 and 5.2 hold

∇χi(θ) = EIi
[T |θ]

∑

s∈Si

∑

a∈Ai

π
µ(θ)
Ii

(s)∇µi(a|s; θi)J̃i(s, a; θ)

�

This proposition is similar to Proposition 1 on page 35 of Marbach (1998).

The expression for the gradient in Proposition 5.1 can be estimated over a renewal

cycle (cycle between consecutive visits to recurrent state s∗i) as

Fm,i(θ) =

tm+1−1
∑

n=tm

Ri(sn, an; θ)
∇µi(sn, an; θi)

µi(sn, an; θi)
(5.2)

where tm is the time of the mth visit at the recurrent state s∗i and Ri(sn, an; θ) =
∑tm+1−1

k=n ri(sn, an; θ) is an estimate of J̃i(sn, an; θ).

3With the definition of absorbing state in Figure 5.1,J̃i is the undiscounted projected action-value function
of subtask Mi.

89

From Equation 5.2, we obtain the following procedure to update θi, the parameter

vector of subtask Mi, along the approximate gradient direction at every time step.

zk+1,i =

0 sk = s∗i ,

zk,i +
∇µi(ak|sk;θk,i)

µi(ak|sk;θk,i)
otherwise.

(5.3)

θk+1,i = θk,i + αk,iRi(sk, ak; θk)zk+1,i

where αk,i is the step size parameter for subtask Mi and satisfies the following assumptions.

Assumption 5.3: αk,i’s are deterministic, nonnegative, and satisfy
∑∞

k=1 αk,i = ∞ and
∑∞

k=1 α2
k,i <∞. �

Assumption 5.4: αk,i’s are non-increasing and there exists a positive integer p and a posi-

tive scalar A such that
∑n+t

k=n(αn,i − αk,i) ≤ Atpα2
n,i for all positive integers n and t. �

We have the following convergence result for the iterative procedure in Equation 5.3 to

update the parameters.

Proposition 5.2: Let Assumptions 5.1, 5.2, 5.3, and 5.4 hold, and let θk be the sequence

of parameter vectors generated by Equation 5.3. Then, the estimation of performance mea-

sure χi(θk) converges and limk→∞∇χi(θk) = 0 with probability 1. �

This proposition is similar to Proposition 14 on page 59 of Marbach (1998).

Equation 5.3 provides an unbiased estimate of ∇χi(θ). For systems involving a large

state space, the interval between visits to state s∗i can be large. As a consequence, the

estimate of ∇χi(θ) might have a large variance. Several methods have been proposed

to reduce the variance in this estimation and yield faster convergence (Marbach, 1998;

90

Baxter and Bartlett, 2001). For instance, we can use a discount factor γ in the reward-to-

go estimation. However, these methods introduce a bias into the estimate of ∇χi(θ). For

these methods, we can derive a modified version of Equation 5.3 to incrementally update

the parameter vector along the approximate gradient direction.

5.2 Hierarchical Policy Gradient Algorithms

After decomposing the overall task to a set of subtasks as described in Chapter 3, and

formulating each subtask in the hierarchy as an episodic PGRL problem as illustrated in

Section 5.1, we can use the update Equation 5.3 and derive an HPGRL algorithm to maxi-

mize the weighted reward-to-go for every subtask in the hierarchy. Algorithm 3 shows the

pseudo code for this algorithm.

Algorithm 3 A hierarchical policy gradient algorithm that maximizes the weighted reward-
to-go for the subtasks in the hierarchy.

1: Function HPGRL(Task Mi, State s)
2: RR = 0
3: if Mi is a primitive action then
4: execute action i in state s, observe state s′ and reward r(s, i)
5: return r(s, i)
6: else /* Mi is a non-primitive subtask */
7: while Mi has not terminated (s 6= s∗i) do
8: choose action a using policy µi(s; θi)
9: R=HPGRL(Task Ma, State s)

10: observe result state s′ and internal reward r̃i(s, a)
11: if s′ = s∗i then
12: zk+1,i = 0
13: else
14: zk+1,i = zk,i +

∇µi(a|s;θk,i)

µi(a|s;θk,i)

15: end if
16: θk+1,i = θk,i + αk,i [R + r̃i(s, a)] zk+1,i

17: RR = RR + R
18: s = s′

19: end while
20: end if
21: return RR
22: end HPGRL

91

The term r̃i(s, a) on Lines 10 and 16 of the algorithm is the internal reward which can

be used only inside each subtask to speed up its local learning and does not propagate to the

upper levels in the hierarchy. Lines 11 to 16 can be replaced with any other policy gradient

algorithm to optimize weighted reward-to-go, such as those presented in Marbach (1998)

or Baxter and Bartlett (2001). Thus, Algorithm 3 describes a family of HPGRL algorithms

to maximize the weighted reward-to-go for every subtask in the hierarchy.

The above formulation of each subtask brings the following limitations for the learned

policy: 1) Parameterized representation of a policy limits the policy search to a set which

is typically smaller than the set of all possible policies. 2) Gradient-based policy search

methods find a solution which is locally, rather than globally, optimal. Thus, in general, the

family of algorithms described above converges to a recursively local optimal policy. If

the policy learned for every subtask in the hierarchy coincides with the best policies, then

these algorithms converge to a recursively optimal policy.

5.2.1 Taxi-Fuel Problem

In this section, we apply the HPGRL algorithm to the taxi-fuel problem introduced in

Dietterich (1998), and compare its performance with MAXQ-Q, a value function hierar-

chical RL algorithm (Dietterich, 2000), and flat Q-learning.

A 5-by-5 grid world inhabited by a taxi is shown in Figure 5.2. There are four stations

marked as B(lue), G(reen), R(ed), and Y(ellow). The task is episodic. In each episode, the

taxi starts in a randomly chosen location and with a randomly chosen amount of fuel rang-

ing from 5 to 12 units. There is a passenger at one of the four stations (chosen randomly),

and that passenger wishes to be transported to one of the other three stations (also chosen

randomly). The taxi must go to the passenger’s location, pick up the passenger, go to its

destination location and drop off the passenger there. The episode ends when the passenger

is deposited at its destination station or taxi goes out of fuel. There are 8, 750 possible states

and 7 primitive actions in the domain, Pickup, Dropoff, Fillup, and four navigation actions

92

(each of these consumes one unit of fuel). Each action is deterministic. There is a reward

of−1 for each action and an additional reward of 20 for successfully delivering the passen-

ger. There is a reward of −10 if the taxi attempts to execute the Dropoff or Pickup actions

illegally, and a reward of −20 if the fuel level falls below zero. The system performance

is measured in terms of the average reward per step which is equivalent to maximizing the

total reward per episode in this task. Each experiment was conducted ten times and the

results averaged.

T : Taxi
B : Blue Station
G : Green Station
R : Red Station
Y : Yellow Station
F : Gas Station

0 1 2 3 4

0

1

2

3

4 G

B

R

T

Y

F

Figure 5.2. The taxi-fuel problem.

Figure 5.3 compares the performance of HPGRL, MAXQ-Q and flat Q-learning algo-

rithms on the taxi-fuel problem.4 The hierarchical policy gradient algorithm used in this

experiment is the one shown in Algorithm 3, with one policy parameter for each state-

action pair (s, a). The graph shows that MAXQ-Q converges faster than HPGRL and flat

Q-learning, and HPGRL is slightly faster than flat Q-learning.

As we expected, the HPGRL algorithm converges to the same performance as MAXQ-

Q. However, it is much slower than its value function based counterpart. The performance

of HPGRL can be improved by better policy formulation and using more sophisticated

policy gradient algorithms for each subtask. The slow convergence of HPGRL algorithms

4Both HPGRL and MAXQ-Q utilize the hierarchical task decomposition used in Dietterich (1998).

93

0 1 2 3 4 5

x 10
4

−7

−6

−5

−4

−3

−2

−1

0

1

2

Number of Trials

R
ew

ar
d

 p
er

 S
te

p

MAXQ−Q
Flat Q−Learning
Hierarchical Policy Gradient

Figure 5.3. This figure compares the performance of the HPGRL algorithm proposed in
this section with MAXQ-Q and flat Q-learning algorithms on the taxi-fuel problem.

motivates us to use both VFRL and PGRL methods in a hierarchy. We address this by

introducing hierarchical hybrid algorithms in the next section.

5.3 Hierarchical Hybrid Algorithms

Despite the methods proposed to reduce the variance of gradient estimators in PGRL

algorithms, these algorithms are still slower than VFRL methods as shown in the simple

taxi-fuel experiment in Section 5.2.1. We accelerate learning of HPGRL algorithms by

formulating those subtasks with smaller state spaces and finite action spaces usually located

at the high levels of the hierarchy as VFRL problems, and those with large state spaces

and/or infinite action spaces usually located at the low levels of the hierarchy as PGRL

problems. This formulation can benefit from the faster convergence of VFRL methods

and the power of PGRL algorithms in domains with infinite state and/or action spaces at

the same time. We call this family of algorithms, hierarchical hybrid algorithms and

illustrate them using a ship steering task.

94

Figure 5.4 shows a ship steering task (Miller et al., 1990). A ship starts at a randomly

chosen position, orientation, and turning rate. Its goal is to be maneuvered at a constant

speed through a gate placed at a fixed position. The ship does not know the location of the

gate and observes the gate only when it passes through it.

.

θ

(x, y)

Gate

0
0 x 1 km

1 km

y

Figure 5.4. The ship steering task.

Equations 5.4 gives the motion equations of the ship, where T = 5 is the time constant

of convergence to desired turning rate, V = 3 m/sec is the constant speed of the ship, and

∆ = 0.2 sec is the sampling interval. There is a time lag between changes in the desired

turning rate and the actual turning rate, modeling the effects of a real ship’s inertia and the

resistance of the water.

x[t + 1] = x[t] + ∆V sin θ[t]

y[t + 1] = y[t] + ∆V cos θ[t]

θ[t + 1] = θ[t] + ∆θ̇[t]

θ̇[t + 1] = θ̇[t] + ∆(r[t]− θ̇[t])/T

(5.4)

At each time t, the state of the ship is given by its position x[t] and y[t], orientation

θ[t] and actual turning rate θ̇[t]. The action is the desired turning rate of the ship r[t]. All

95

State x 0 to 1000 meters
y 0 to 1000 meters
θ -180 to 180 degrees
θ̇ -15 to 15 degrees/sec

Action r -15 to 15 degrees/sec

Table 5.1. State and action variables for the ship steering task.

four state variables and also the action are continuous and their range is shown in Table

5.1. The ship steering problem is episodic. In each episode, the goal is learning to generate

sequences of actions that steer the center of the ship through the gate in the minimum

amount of time. The sides of the gate are placed at coordinates (350,400) and (450,400).

If the ship moves out of bound (x < 0 or x > 1000 or y < 0 or y > 1000), the episode

terminates and is considered as a failure.

We applied both a flat PGRL algorithm and an actor-critic algorithm (Konda, 2002) to

this task without achieving a good performance in a reasonable amount of time. Figure 5.7

shows that after learning for 50, 000 episodes, these algorithms are able to control the ship

to successfully pass through the gate only 60 percent of time. We believe this occurred

due to two reasons, which make this problem hard to learn. First, since the ship cannot

turn faster than 15 degrees/sec, all state variables change only by a small amount at each

control interval. Thus, we need a high resolution discretization of the state space in order

to accurately model state transitions, which requires a large number of parameters for the

function approximator and makes the problem intractable. Second, there is a time lag

between changes in the desired turning rate r and the actual turning rate θ̇, ship’s position

x, y, and orientation θ, which requires the controller to deal with long delays.

However, we successfully applied a flat policy gradient algorithm to the simplified ver-

sions of this problem shown in Figure 5.5, when x and y change from 0 to 150 instead of

0 to 1000, the ship always starts at a fixed position (initial positions in Figure 5.5) with

randomly chosen orientation and turning rate, and the goal is to reach to a neighborhood of

a pre-defined point (goals in Figure 5.5). It indicates that this high-dimensional non-linear

96

control problem can be learned using an appropriate hierarchical decomposition. Using this

prior knowledge, we decompose the problem into two levels using the task graph shown

in Figure 5.6. At the high-level, the agent learns to select among four diagonal and four

horizontal/vertical subtasks. At the low-level, each low-level subtask learns a sequence of

turning rates to achieve its own goal. We use symmetry and map eight subtasks located

below the root to only two subtasks at the low-level, one associated with four diagonal

subtasks and one associated with four horizontal/vertical subtasks as shown in Figure 5.6.

We call them diagonal and horizontal/vertical subtasks.

150 m

0
0 x

y

150 m

Initial Position (40,75)

Goal (140,75)

0
0 x

y

150 m

150 m

Initial Position (40,40)

Goal (140,140)

Figure 5.5. This figure shows two simplified versions of the ship steering task used as
low-level subtasks in the hierarchical decomposition of the ship steering problem.

The flat PGRL algorithm used in this section uses Equation 5.3 and CMAC function

approximator with 9 four-dimensional tilings, dividing the space into 20× 20× 36× 5 =

72, 000 tiles each. The actor-critic algorithm also uses the above function approximator for

its actor, and 9 five dimensional tilings of size 5× 5× 36× 5× 30 = 135, 000 tiles for its

critic. The fifth dimension of critic’s tilings is for the continuous action.

In the hierarchical hybrid algorithm, we decompose the task using the task graph in

Figure 5.6. At the high-level, the learner explores in a low-dimensional sub-space of the

original high-dimensional state space. The state variables are only the coordinates of the

ship x and y with the full range from 0 to 1000. The actions are four diagonal and four

97

Continuous Action
Turning Rate r

−15 < r < 15

Continuous Action
Turning Rate r

−15 < r < 15

x = x + 100
y = y + 100

x = x + 100
y = y − 100

x = x − 100
y = y + 100

x = x − 100
y = y − 100

x = x + 100
y = y

x = x
y = y − 100

x = x − 100
y = y

x = x
y = y + 100

Root

Diagonal Subtasks Subtasks
Horizontal / Vertical

Diagonal
Subtask Subtask

Primitive Action

Horizontal / Vertical

Figure 5.6. A task graph for the ship steering problem.

horizontal/vertical subtasks similar to those subtasks shown in Figure 5.5. The state space

is coarsely discretized into 400 states. We use the value-based Q(λ) algorithm with ε-greedy

action selection and replacing traces to learn a sequence of diagonal and horizontal/vertical

subtasks to achieve the goal of the entire task (passing through the gate). Each episode

ends when the ship passes through the gate or moves out of bound. Then the new episode

starts with the ship in a randomly chosen position, orientation, and turning rate. In this

algorithm, λ is set to 0.9, learning rate to 0.1, and ε starts with 0.1 remains unchanged until

the performances of low-level subtasks reach to a certain level and then is decreased by a

factor of 1.01 every 50 episodes.

At the low-level, the learner explores local areas of the high-dimensional state space

without discretization. When the high-level learner selects one of the low-level subtasks,

the low-level subtask takes control and executes the following steps as shown in Figure 5.5.

1) Maps the ship to a new coordinate system in which the ship is in position (40, 40) for the

diagonal subtask and (40, 75) for the horizontal/vertical subtask. 2) Sets the low-level goal

to position (140, 140) for the diagonal subtask and (140, 75) for the horizontal/vertical sub-

task. 3) Sets the low-level boundaries to 0 ≤ x , y ≤ 150. 4) Generates primitive actions

98

until either the ship reaches to a neighborhood of the low-level goal, a circle with radius 10

around the low-level goal (success), or moves out of the low-level bounds (failure).

The two low-level subtasks use all four state variables, however the range of coordina-

tion variables x and y is 0 to 150 instead of 0 to 1000. Their action variable is the desired

turning rate of the ship, which is a continuous variable with range −15 to 15 degrees/sec.

The control interval is 0.6 sec (three times the sampling interval ∆ = 0.2 sec). They use

the PGRL algorithm on Lines 11 to 16 of Algorithm 3 to update their parameters. In addi-

tion, they use a CMAC function approximator with 9 four dimensional tilings, dividing the

space into 5× 5× 36× 5 = 4, 500 tiles each. One parameter w is defined for each tile and

the parameterized policy is a Gaussian:

µ(s, a,W) =
1√
2π

e−
A
2 , A =

∑N

i=0 wiφi
∑N

i=0 φi

where N = 9 × 4, 500 = 40, 500 is the total number of tiles and φi is 1 if state s falls in

tile i and 0 otherwise. The actual action is generated after mapping the value chosen by the

Gaussian policy to the range from −15 to 15 degrees/sec using a sigmoid function.

In addition to the original reward of −1 per step, we define internal rewards 100 and

−100 for low-level success and failure, and a reward according to the distance of the current

ship orientation θ to the angle between the current position and low-level goal θ̂ given by

G = exp

(

−‖θ − θ̂‖2
30× 30

)

− 1

where 30 degrees gives the width of the reward function. When a low-level subtask termi-

nates, the only reward that propagates to the high-level is the summation of all −1 rewards

per step. In addition to reward received from low-level, high-level uses a reward 100 upon

successfully passing through the gate.

We trained the system for 50, 000 episodes. In each episode, the high-level learner

(controller located at root) selects a low-level subtask, and the selected low-level subtask

99

is executed until it successfully terminates (ship reaches the low-level goal) or it fails (ship

goes out of the low-level bounds). Then control returns to the high-level subtask (root)

again. The following results are averaged over five simulation runs.

Figure 5.7 compares the performance of the hierarchical hybrid algorithm with flat

PGRL and actor-critic algorithms in terms of the number of successful trials in 1000

episodes. As this figure shows, despite the high resolution function approximators used

in both flat algorithms, their performance is worse than the hierarchical hybrid algorithm.

Moreover, their computation time per step is also much more than the hierarchical hybrid

algorithm, due to the large number of parameters to be learned.

0 1 2 3 4 5

x 10
4

0

200

400

600

800

1000

1200

Number of Episodes

N
u

m
b

er
 o

f
S

u
cc

es
s

in
 1

00
0

E
p

is
o

d
es

Hierarchical Hybrid Algorithm
Flat Policy Gradient Algorithm
Flat Actor−Critic Algorithm

Figure 5.7. This figure shows the performance of hierarchical hybrid, flat PGRL and
actor-critic algorithms in terms of the number of successful trials in 1000 episodes.

Figure 5.8 demonstrates the performance of the hierarchical hybrid algorithm in terms

of the average number of low-level subtask calls. This figure shows that after learning, the

learner executes about 4 low-level subtasks (diagonal or horizontal/vertical subtasks) per

episode.

100

0 1 2 3 4 5

x 10
4

0

2

4

6

8

10

12

Number of Episodes

N
um

be
r

of
 L

ow
−L

ev
el

 S
ub

ta
sk

 C
al

ls
 in

 1
00

0
E

pi
so

de
s

Number of Low−Level Subtask Used

Figure 5.8. This figure shows the performance of the hierarchical hybrid algorithm in
terms of the number of low-level subtask calls.

Figure 5.9 compares the performance of hierarchical hybrid, flat PGRL and actor-critic

algorithms in terms of the average number of steps to goal (averaged over 1000 episodes).

This figure shows that after learning, it takes about 220 primitive actions (turn actions) for

the hierarchical hybrid learner to pass through the gate.

Figures 5.10 and 5.11 show the performance of the diagonal and horizontal/vertical

subtasks in terms of the number of success out of 1000 executions respectively.

Finally, Figure 5.12 demonstrates the learned policy for two sample initial configu-

rations of the ship shown with big circles. The upper configuration is x = 700 , y =

700 , θ = 100 , θ̇ = 3.65 and the lower one is x = 750 , y = 180 , θ = 80 , θ̇ = 7.9.

The low-level subtasks chosen by the agent at the high-level are shown by small circles in

this figure.

101

0 1 2 3 4 5

x 10
4

200

250

300

350

400

450

Number of Episodes

N
u

m
b

er
 o

f
P

ri
m

it
iv

e
S

te
p

s
in

 1
00

0
E

p
is

o
d

es Hierarchical Hybrid Algorithm
Flat Policy Gradient Algorithm
Flat Actor−Critic Algorithm

Figure 5.9. This figure shows the performance of hierarchical hybrid, flat PGRL and
actor-critic algorithms in terms of the number of steps to pass through the gate.

0 1 2 3 4 5 6 7 8

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

Number of Episodes

N
u

m
b

er
 o

f
S

u
cc

es
s

in
 1

00
0

E
p

is
o

d
es

Diagonal Subtask Performance

Figure 5.10. This figure shows the performance of the diagonal subtask in terms of the
number of successful trials in 1000 episodes.

102

0 1 2 3 4 5 6 7 8 9

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

Number of Episodes

N
u

m
b

er
 o

f
S

u
cc

es
s

in
 1

00
0

E
p

is
o

d
es

Horizontal/Vertical Subtask Performance

Figure 5.11. This figure shows the performance of the horizontal/vertical subtask in terms
of the number of successful trials in 1000 episodes.

Figure 5.12. This figure shows the learned policy for two initial configurations of the ship.

103

5.4 Summary and Future Work

In this chapter, we described HPGRL, a family of hierarchical policy gradient RL al-

gorithms for learning in domains with continuous state and/or action spaces. We compared

the performance of this family of algorithms with a hierarchical VFRL algorithm and a

flat RL algorithm in a simple taxi-fuel problem. The results demonstrate that the HPGRL

algorithm converges slower than the hierarchical VFRL algorithm. To accelerate learning

in HPGRL algorithms, we proposed a family of hierarchical hybrid algorithms in which

subtasks located at high level(s) of the hierarchy are formulated as VFRL, and subtasks lo-

cated at low level(s) of the hierarchy are defined as PGRL problems. We use a continuous

state and action ship steering task to illustrate this family of algorithms and to demonstrate

their performance.

The algorithms proposed in this chapter are based on the assumption that the overall

task (root of the hierarchy) is episodic. One direction for future work is to reformulate the

algorithms presented in this chapter for the case when the overall task is continuing. In

this case, the root task is formulated as a continuing problem with the average reward as

its performance function. Since the policy learned at root involves policies of its children,

the type of optimality achieved at root depends on how we formulate other subtasks in

the hierarchy. Different notions of optimality in hierarchical average reward presented in

Chapter 4 can be used to develop new HPGRL algorithms for continuing problems.

Although the proposed algorithms give us the ability to deal with continuous state and

continuous action spaces, they are not still appropriate to efficiently control real-world

problems in which the speed of learning is crucial. The results of ship steering task indicate

that in order to apply the proposed algorithms to real-world domains, more powerful PGRL

algorithms are needed to be developed — PGRL algorithms that need a smaller number of

samples to learn a good policy, and are less computationally expensive.

104

CHAPTER 6

HIERARCHICAL MULTI-AGENT REINFORCEMENT
LEARNING

In this chapter,1 we investigate the use of hierarchical reinforcement learning (HRL)

to speed up the acquisition of cooperative multi-agent tasks. Our approach to learning in

cooperative multi-agent domains differs from all the approaches discussed in Section 2.5 in

one key respect, namely the use of hierarchy to speed up multi-agent reinforcement learn-

ing. The key idea underlying our approach is that coordination skills are learned much more

efficiently if the agents have a hierarchical representation of the task structure. Algorithms

for learning task-level coordination have also been developed in non-MDP approaches, see

Sugawara and Lesser (1998). We first introduce a hierarchical multi-agent RL framework.

In this framework, we assume agents are cooperative and each agent is given an initial

hierarchical decomposition of the overall task. Moreover, agents are homogeneous, i.e.,

use the same hierarchical task decomposition. However, learning is decentralized, with

each agent learning three interrelated skills: how to perform subtasks, which order to do

them in, and how to coordinate with other agents. The use of hierarchy speeds up learning

in multi-agent domains by making it possible to learn coordination skills at the level of

subtasks instead of primitive actions. We define cooperative subtasks to be those subtasks

in which coordination among agents significantly improves the performance of the over-

1Most of the work presented in this chapter first appeared in 1) Makar, Mahadevan and Ghavamzadeh
(2001), “Hierarchical multi-agent reinforcement learning,” Proceedings of the Fifth International Conference
on Autonomous Agents, pp. 246-253, and 2) Ghavamzadeh and Mahadevan (2004), “Learning to Com-
municate and Act using Hierarchical Reinforcement Learning,” Proceedings of the Third International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pp. 1114-1121. A longer version of this work
has also been submitted to the Journal of Autonomous Agents and Multi-Agent Systems.

105

all task. Agents cooperate with their teammates at cooperative subtasks and ignore them

while performing non-cooperative subtasks. Those levels of the hierarchy which include

cooperative subtasks are called cooperation levels. Since high-level coordination allows

for increased cooperation skills as agents do not get confused by low-level details, we usu-

ally define cooperative subtasks at high level(s) of the hierarchy. The proposed hierarchical

approach allows agents to learn coordination faster by sharing information at the level of

cooperative subtasks, rather than attempting to learn coordination at the level of primitive

actions. We initially assume that communication is free and propose a hierarchical multi-

agent RL algorithm called Cooperative HRL. In Section 6.4, we use a large four-agent

AGV scheduling problem as the experimental testbed and compare the performance of the

Cooperative HRL algorithm with selfish HRL, as well as single-agent HRL and standard

Q-learning algorithms. We also show that the Cooperative HRL outperforms widely used

industrial heuristics, such as “first come first serve”, “highest queue first” and “nearest

station first” in this problem.

Later in this chapter, we address the issue of rational communication among autonomous

agents, which is important when communication is costly. The goal is for agents to learn

both action and communication policies that together optimize the task given the com-

munication cost. We extend the Cooperative HRL algorithm to include communication

decisions and propose a cooperative multi-agent HRL algorithm called COM-Cooperative

HRL. In this algorithm, we add a communication level to the hierarchical decomposition

of the problem below each cooperation level. Before making a decision at a cooperative

subtask, agents decide if it is worthwhile to perform a communication action. A communi-

cation action has a certain cost and provides each agent at a certain cooperation level with

the actions selected by the other agents at the same level. We demonstrate the efficacy of

the COM-Cooperative HRL algorithm as well as the relation between the communication

cost and the learned communication policy using a multi-agent taxi problem.

106

The rest of this chapter is organized as follows. In Section 6.1, we introduce the multi-

agent SMDP model, which is an extension of the SMDP model to cooperative multi-agent

domains. Section 6.2 describes the hierarchical multi-agent RL framework which is used

in the algorithms proposed in this chapter. In Sections 6.3 and 6.4, we introduce the

Cooperative HRL algorithm and present the experimental results of using this algorithm

in a four-agent AGV scheduling problem. In Section 6.5, we illustrate how to incorpo-

rate communication decisions in the Cooperative HRL algorithm. In this section, after a

brief introduction of communication among agents in Section 6.5.1, we illustrate the COM-

Cooperative HRL algorithm in Section 6.5.2. Section 6.6 presents experimental results of

using the COM-Cooperative HRL algorithm in a multi-agent taxi domain. Finally, Section

6.7 summarizes the chapter and discusses some directions for future work. The multi-agent

version of the robot trash collection task described in Chapter 3 will serve as our example

domain throughout this chapter. The multi-agent trash collection task and its task graph are

shown in Figure 6.1.

A1, A2 : Agents
T1 : Location of the first trash can
T2 : Location of the second trash can
Dump : Location to deposit all trash

Collect Trash at T1 Collect Trash at T2

Find WallAlign with WallFollow Wall

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Children of
the top−level
Cooperative
Subtask (Root)

Room3

Corridor

Dump

T2

T1

Room1

Room2

A2

A1

Cooperative SubtaskCooperation Level

U =1

Figure 6.1. A multi-agent trash collection task and its associated task graph.

6.1 Multi-Agent SMDP Model

In this section, we extend the SMDP model described in Section 2.3 to multi-agent do-

mains when a team of agents controls the process, and introduce the multi-agent SMDP

107

(MSMDP) model. We assume agents are cooperative, i.e., maximize the same utility over

an extended period of time. The individual actions of agents interact in that the effect

of one agent’s action may depend on the actions taken by the others. When a group of

agents perform temporally extended actions, these actions may not terminate at the same

time. Therefore, unlike the multi-agent extension of an MDP, the MMDP model (Boutilier,

1999), the multi-agent extension of SMDP requires extending the notion of a decision mak-

ing event.

Definition 6.1: An MSMDP consists of six components (Υ,S,A,P ,R, I, T), which are

defined as follows:

The set Υ is a finite collection of n agents, with each agent j ∈ Υ having a finite set Aj of

individual actions. An element ~a = 〈a1, . . . , an〉 of the joint-action space A =
∏n

j=1 Aj

represents the concurrent execution of actions aj by each agent j, j = 1, . . . , n. The com-

ponents S ,R, I , and P are as in an SMDP, the set of states of the system being controlled,

the reward function mapping S → IR, the initial state distribution I : S → [0, 1], and the

state and action dependent multi-step transition probability function P : S× IN×S×A →

[0, 1]. The term P (s′, N |s,~a) denotes the probability that joint-action ~a will cause the sys-

tem to transition from state s to state s′ in N time steps. Since the components of a joint-

action are temporally extended actions, they may not terminate at the same time. Therefore,

the multi-step transition probability P depends on how we define decision epochs and as

a result, depends on the termination scheme T . Three termination strategies τany, τall,

and τcontinue for temporally extended joint-actions were introduced and analyzed in Ro-

hanimanesh and Mahadevan (2003). In τany termination scheme, the next decision epoch

is when the first action within the joint-action currently being executed terminates, where

the rest of the actions that did not terminate are interrupted. When an agent completes an

action (e.g., finishes collect trash at T1 by putting trash in Dump), all other agents inter-

108

rupt their actions, the next decision epoch occurs, and a new joint-action is selected (e.g.,

agent A1 chooses to collect trash at T2 and agent A2 decides to collect trash at T1). In

τall termination scheme, the next decision epoch is the earliest time at which all the actions

within the joint-action currently being executed have terminated. When an agent completes

an action, it waits (takes the idle action) until all the other agents finish their current ac-

tions. Then, next decision epoch occurs and agents choose next joint-action together. In

both these termination strategies, all agents make decision at every decision epoch. The

τcontinue termination scheme is similar to τany in the sense that the next decision epoch is

when the first action within the joint-action currently being executed terminates. However,

the other agents are not interrupted and only terminated agents select new actions. In this

termination strategy, only a subset of agents choose action at each decision epoch. When

an agent completes an action, next decision epoch occurs only for that agent and it selects

its next action given the actions being performed by the other agents. �

The three termination strategies described above are the most common, but not the only

termination schemes in cooperative multi-agent activities. A wide range of termination

strategies can be defined based on them. Of course, not all these strategies are appropriate

for any given multi-agent task. We categorize termination strategies as synchronous and

asynchronous. In synchronous schemes, such as τany and τall, all agents make a decision

at every decision epoch and therefore we need a centralized mechanism to synchronize

agents at decision epochs. In asynchronous strategies, such as τcontinue, only a subset of

agents make decision at each decision epoch. In this case, there is no need for a centralized

mechanism to synchronize agents and decision making can take place in a decentralized

fashion. Since our goal is to design decentralized multi-agent RL algorithms, we use the

τcontinue termination scheme for joint-action selection in the hierarchical multi-agent model

and algorithms presented in this chapter.

109

6.2 A Hierarchical Multi-Agent Reinforcement Learning Framework

In our hierarchical multi-agent framework, we assume that there are n agents in the

environment, cooperating with each other to accomplish a task. The designer of the system

uses her/his domain knowledge to recursively decompose the overall task into a collection

of subtasks that she/he believes are important for solving the problem. We assume that

agents are homogeneous, i.e., all agents are given the same task hierarchy.2 At each level

of the hierarchy, the designer of the system defines cooperative subtasks to be those sub-

tasks in which coordination among agents significantly increases the performance of the

overall task. The set of all cooperative subtasks at a certain level of the hierarchy is called

the cooperation set of that level. Each level of the hierarchy with non-empty cooperation

set is called a cooperation level. The union of the children of the lth level cooperative

subtasks is represented by Ul. Since high-level coordination allows for increased coopera-

tion skills as agents do not get confused by low-level details, we usually define cooperative

subtasks at the highest level(s) of the hierarchy. Agents actively coordinate while making

decision in cooperative subtasks and are ignorant about other agents in non-cooperative

subtasks. Thus, we configure cooperative subtasks to model joint-action values. In the

trash collection problem, we define root as a cooperative subtask. As a result, the top-level

of the hierarchy is a cooperation level, root is the only member of the cooperation set at

the top-level, and U1 consists of all subtasks located at the second level of the hierarchy,

U1 = {collect trash at T1, collect trash at T2} (see Figure 6.1). As it is clear in this prob-

lem, it is more efficient that an agent learns high-level coordination knowledge (what is the

utility of agent A2 collecting trash from trash can T1 if agent A1 is collecting trash from

trash can T2), rather than learning its response to low-level primitive actions of other agents

(what agent A2 should do if agent A1 aligns with wall). Therefore, we define single-agent

policies for non-cooperative subtasks and joint policies for cooperative subtasks.

2Studying the heterogeneous case where agents are given dissimilar decompositions of the overall task
would be more challenging and beyond the scope of this dissertation.

110

Definition 6.2: Under a hierarchical policy µ, each non-cooperative subtask Mi can be

modeled by an SMDP consisting of components (Si, Ai, P
µ
i , Ri). �

Definition 6.3: Under a hierarchical policy µ, each cooperative subtask Mi located at

the lth level of the hierarchy can be modeled by an MSMDP as follows:

Υ is the set of n agents in the team. We assume that agents have only local state infor-

mation and ignore the states of the other agents. Therefore, the state space Si is defined as

the single-agent state space Si (not joint-state space). This is certainly an approximation

but greatly simplifies the underlying multi-agent RL problem. This approximation is based

on the fact that an agent can get a rough idea of what state the other agents might be in just

by knowing the high-level actions being performed by them. The action space is joint and

is defined as Ai = Ai × (Ul)
n−1, where Ul =

⋃m

k=1 Ak is the union of the action sets of

all the lth level cooperative subtasks, and m is the cardinality of the lth level cooperation

set. For the cooperative subtask root in the trash collection problem, the set of agents is

Υ = {A1, A2} and its joint-action space, Aroot, is specified as the cross product of its ac-

tion set, Aroot, and U1,Aroot = Aroot×U1. Finally, since we are interested in decentralized

control, we use the τcontinue termination strategy. Therefore, when an agent terminates a

subtask, the next decision epoch occurs only for that agent and it selects its next action

given the information about the other agents. �

This cooperative multi-agent approach has the following pros and cons:

Pros

• Using HRL scales learning to problems with large state spaces by using the task

structure to restrict the space of policies.

111

• Cooperation among agents is faster and more efficient as agents learn joint-action

values only at cooperative subtasks usually located at the high level(s) of abstraction

and do not get confused by low-level details.

• Since high-level subtasks can take a long time to complete, communication is needed

only fairly infrequently.

• The complexity of the problem is reduced by storing only the local state information

by each agent. It is due to the fact that each agent can often get a rough idea of the

state of the other agents just by knowing about their high-level actions.

Cons

• The learned policy would not be optimal if agents need to coordinate at the subtasks

that have not been defined as cooperative. This issue will be addressed in one of the

AGV experiments in Section 6.4, by extending the joint-action model to the lower

levels of the hierarchy. Although this extension provides the cooperation required at

the lower levels, it increases the number of parameters to be learned and as a result

the complexity of the learning problem.

• If communication is costly, this method might not find an appropriate policy for the

problem. We address this issue in Section 6.5 by including communication decisions

in the model. If communication is cheap, agents learn to cooperate with each other,

and if communication is expensive, agents prefer to make decision only based on

their local view of the overall problem.

• Storing only local state information by agents causes sub-optimality in general. On

the other hand, including the state of the other agents dramatically increases the

complexity of the learning problem and has its own inefficacy. We do not explicitly

address this problem in this dissertation.

112

The value function decomposition described in Section 3.5 relies on a key principle:

the reward function for the parent task is the value function of the child task (see Equations

3.4 and 3.5). Now, we show how the single-agent two-part value function decomposition

described in Section 3.5 can be modified to formulate the joint-value function for coopera-

tive subtasks. In our hierarchical multi-agent model, we configure cooperative subtasks to

store the joint completion function values.

Definition 6.4: The joint completion function for agent j, C j(i, s, a1, . . . , aj−1, aj+1, . . . ,

an, aj), is the expected discounted cumulative reward of completing cooperative subtask

Mi after taking subtask aj in state s while other agents performing subtasks ak,∀k ∈

{1, . . . , n} , k 6= j. The reward is discounted back to the point in time where aj begins

execution. �

In this definition, Mi is a cooperative subtask at level l of the hierarchy and 〈a1, . . . , an〉

is a joint-action in the action set of Mi. Each individual action in this joint-action belongs

to Ul. More precisely, the decomposition equations used for calculating the projected value

and action-value function for cooperative subtask Mi of agent j have the following form:

V̂ j(i, s, a1, . . . , aj−1, aj+1, . . . , an) = Q̂j(i, s, a1, . . . , aj−1, aj+1, . . . , an, µ
j
i (s))

(6.1)

Q̂j(i, s, a1, . . . , aj−1, aj+1, . . . , an , aj) = V̂ j(aj , s) + Cj(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)

One important point to note in this equation is that if subtask aj is itself a cooperative sub-

task at level l+1 of the hierarchy, its projected value function is defined as a joint projected

value function V̂ j(aj, s, ã1, . . . , ãj−1, ãj+1, . . . , ãn), where ã1, . . . , ãj−1, ãj+1, . . . , ãn

belong to Ul+1. In this case, in order to calculate V̂ j(aj, s) for Equation 6.1, we marginalize

V̂ j(aj, s, ã1, . . . , ãj−1, ãj+1, . . . , ãn) over ã1, . . . , ãj−1, ãj+1, . . . , ãn.

113

We illustrate the above projected joint-value function decomposition using the trash

collection task. The two-part value function decomposition for agent A1 at root has the

following form:

Q̂1(root, s, collect trash at T 2 , collect trash at T1) = V̂ 1(collect trash at T1, s)

+C1(root, s, collect trash at T2, collect trash at T1)

which represents the value of agent A1 performing collect trash at T1 in the context of the

overall task (root), when agent A2 is executing collect trash at T2. Note that this value is

decomposed into the projected value of collect trash at T1 subtask (the V̂ term), and the

completion value of the remainder of the root task (the C term).

Given a hierarchical decomposition for any problem, we need to find the highest level

subtasks at which decomposition Equation 6.1 provides a sufficiently good approximation

of the true value. For the problems used in the experiments of this chapter, coordination

only at the highest level of the hierarchy is a good compromise between achieving a de-

sirable performance and reducing the number of joint-state-action values that need to be

learned. Hence, we define root as a cooperative subtask and thus the highest level of the

hierarchy as a cooperation level in these experiments. We extend coordination to lower

levels of the hierarchy by defining cooperative subtasks at levels below root in one of the

experiments of Section 6.4.

6.3 A Hierarchical Multi-Agent Reinforcement Learning Algorithm

In this section, we use the hierarchical multi-agent RL framework described in Section

6.2 and present a hierarchical multi-agent RL algorithm, called Cooperative HRL. The

pseudo code for this algorithm is shown in Algorithm 4 at the end of this chapter. In the

Cooperative HRL, V̂ and C values can be learned through a standard TD-learning method

based on sample trajectories. One important point to note is that since non-primitive sub-

tasks are temporally extended in time, the update rules for C values used in this algorithm

114

are based on the SMDP model. In this algorithm, an agent starts from the root task and

chooses a subtask till it reaches a primitive action i. It executes primitive action i in state s,

receives reward r and observes resulting state s′, the value function V of primitive subtask3

Mi is updated using:

Vt+1(i, s) = [1− αt(i)]Vt(i, s) + αt(i)r

where αt(i) is the learning rate for subtask Mi at time t. This parameter should be gradually

decreased to zero in time limit.

Whenever a subtask terminates, the C values are updated for all states visited during the

execution of that subtask. Assume an agent is executing a non-primitive subtask Mi and is

in state s, then while subtask Mi does not terminate, it chooses subtask Ma according to the

current exploration policy (softmax or ε-greedy with respect to µi(s)). If subtask Ma takes

N primitive steps and terminates in state s′, the corresponding C value is updated using

Ct+1(i, s, a) = [1− αt(i)]Ct(i, s, a) + αt(i)γ
N [Ct(i, s

′, a∗) + V̂t(a
∗, s′)] (6.2)

where a∗ = arg maxa′∈Ai
[Ct(i, s

′, a′) + V̂t(a
′, s′)].

The V̂ values in Equation 6.2 are calculated using the following equation:

V̂ (i, s) =

maxa∈Ai
Q̂(i, s, a) if Mi is a non-primitive subtask,

∑

s′∈Si
P (s′|s, i)r(s, i) if Mi is a primitive action.

Similarly, when agent j completes execution of subtask aj ∈ Ai, the joint completion

function C of cooperative subtask Mi located at level l of the hierarchy is updated for all

the states visited during the execution of subtask aj using

3We do not use V̂ here, since projected and hierarchical value functions are the same for primitive actions.

115

C
j
t+1(i, s, a

1, . . . , aj−1, aj+1 , . . . , an, aj) = [1− α
j
t (i)]C

j
t (i, s, a

1, . . . , aj−1, aj+1, . . . , an, aj)

+α
j
t (i)γ

N [Cj
t (i, s

′, â1, . . . , âj−1, âj+1, . . . , ân, a∗) + V̂
j
t (a∗, s′)]

(6.3)

where a∗ = arg maxa′∈Ai
[Cj

t (i, s
′, â1, . . . , âj−1, âj+1, . . . , ân, a′) + V̂ j

t (a′, s′)], a1, . . . ,

aj−1, aj+1, . . . , an and â1, . . . , âj−1, âj+1, . . . , ân are actions in Ul being performed by

the other agents when agent j is in states s and s′ respectively.

Equation 6.3 indicates that in addition to the states visited during the execution of a

subtask in Ul (s and s′), an agent must store the actions in Ul being performed by all the

other agents (a1, . . . , aj−1, aj+1, . . . , an in state s and â1, . . . , âj−1, âj+1, . . . , ân in state

s′). Sequence Seq is used for this purpose in Algorithm 4.

6.4 Experimental Results for the Cooperative HRL Algorithm

In this section, we demonstrate the performance of the Cooperative HRL algorithm

proposed in Section 6.3 using a four-agent AGV scheduling task. In this experiment, we

first provide a brief overview of the domain, then apply the Cooperative HRL algorithm

to the problem, and finally compare its performance with other algorithms, such as selfish

multi-agent HRL (where each agent acts independently and learns its own optimal policy),

single-agent HRL, and flat Q-Learning.

Figure 6.2 shows the layout of the AGV scheduling domain. M1 to M4 show work-

stations in this environment. Parts of type i have to be carried to the drop-off station at

workstation i, Di, and the assembled parts brought back from pick-up stations of work-

stations, Pi’s, to the warehouse. The AGV travel is unidirectional (as the arrows show).

This task is decomposed using the task graph in Figure 6.3. Each agent uses a copy of

this task graph. We define root as a cooperative subtask and the highest level of the hier-

archy as a cooperation level. Therefore, all subtasks at the second level of the hierarchy

116

Algorithm 4 The Cooperative HRL algorithm.
1: Function Cooperative-HRL(Agent j, Task Mi at the lth level of the hierarchy, State s)
2: let Seq = {} be the sequence of (state-visited, actions in

⋃L
k=1

Uk being performed by the other agents)
while executing Mi /* L is the number of levels in the hierarchy */

3: if Mi is a primitive action then
4: execute action i in state s, receive reward r(s, i) and observe state s′

5: V
j
t+1(i, s)←− [1− α

j
t (i)]V

j
t (i, s) + α

j
t (i)r(s, i)

6: push (state s, actions in {Ul|l is a cooperation level} being performed by the other agents) onto the
front of Seq

7: else /* Mi is a non-primitive subtask */
8: while Mi has not terminated do
9: if Mi is a cooperative subtask then

10: choose action aj according to the current exploration policy
µ

j
i (s, a

1, . . . , aj−1, aj+1, . . . , an)
11: let ChildSeq = Cooperative-HRL(Mj , aj , s), where ChildSeq is the sequence of (state-visited,

actions in
⋃L

k=1
Uk being performed by the other agents) while executing action aj

12: observe result state s′ and â1, . . . , âj−1, âj+1, . . . , ân actions in Ul being performed by the
other agents

13: let a∗ = arg maxa′∈Ai
[Cj

t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a′) + V̂
j
t (a′, s′)]

14: let N = 0
15: for each (s, a1, . . . , aj−1, aj+1, . . . , an) in ChildSeq from the beginning do
16: N = N + 1
17: C

j
t+1(i, s, a

1, . . . , aj−1, aj+1, . . . , an, aj)←−
[1− α

j
t (i)]C

j
t (i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)+

α
j
t (i)γ

N [Cj
t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a∗) + V̂

j
t (a∗, s′)]

18: end for
19: else /* Mi is not a cooperative subtask */
20: choose action aj according to the current exploration policy µ

j
i (s)

21: let ChildSeq = Cooperative-HRL(Mj , aj , s), where ChildSeq is the sequence of (state-visited,
actions in

⋃L
k=1

Uk being performed by the other agents) while executing action aj

22: observe result state s′

23: let a∗ = arg maxa′∈Ai
[Cj

t (i, s′, a′) + V̂
j
t (a′, s′)]

24: let N = 0
25: for each state s in ChildSeq from the beginning do
26: N = N + 1
27: C

j
t+1(i, s, a

j)←− [1− α
j
t (i)]C

j
t (i, s, aj) + α

j
t (i)γ

N [Cj
t (i, s′, a∗) + V̂

j
t (a∗, s′)]

28: end for
29: end if
30: append ChildSeq onto the front of Seq
31: s = s′

32: end while
33: end if
34: return Seq

35: end Cooperative-HRL

117

(DM1, . . . , DM4, DA1, . . . , DA4) belong to set U1. Coordination skills among agents

are learned by using joint-action values at the highest level of the hierarchy as described in

Section 6.3.

Unload

40m20m

40m40m

Parts

Warehouse 60m

P4P3

D2

D3

60m

60m
Load

20m

P1P2

M: Machine
D: Drop off Station
P: Pick up Station

Assemblies

D1

D4

M2 M1

M4M3

Figure 6.2. A multi-agent AGV scheduling domain. There are four AGVs (not shown)
which carry raw materials and finished parts between machines and the warehouse.

The state of the environment consists of the number of parts in the pick-up and drop-off

stations of each machine, and whether the warehouse contains parts of each of the four

types. In addition, each agent keeps track of its own location and status as a part of its state

space. Thus, in the flat case, the state space consists of 100 locations, 8 buffers of size 3, 9

possible states of AGV (carrying part1, . . . , carrying assembly1, . . . , empty), and 2 values

for each part in the warehouse, i.e., 100 × 48 × 9 × 24 ≈ 109 states. The state abstraction

helps in reducing the state space considerably. Only the relevant state variables are used

while storing the completion functions in each node of the task graph. For example, for

the navigation subtasks, only the location state variable is relevant, and this subtask can

118

DM i : Deliver Material to Station i
DA i : Deliver Assembly from Station i
NavLoad : Navigation to Loading Deck
NavPut i : Navigation to Dropoff Station i
NavPick i : Navigation to Pickup Station i
NavUnload : Navigation to Unload Deck

Forward RightLeft

Root

DA2DA1.DM1 DM2

Cooperative SubtaskCooperation Level

 top−level Cooperative
 Subtask (Root)

The shaded subtasks are defined as cooperative
subtasks and this level as cooperation level

in the last experiment of this section

.Load Put Pick UnloadNavLoad NavUnloadNavPick iNavPut i

U = Children of the1

Figure 6.3. Task graph for the AGV scheduling task.

be learned with 100 values. Hence, for each high-level subtask (DM1, . . . , DM4), the

number of relevant states would be 100 × 9 × 4 × 2 = 7, 200, and for each high-level

subtask (DA1, . . . , DA4), the number of relevant states would be 100 × 9 × 4 = 3, 600.

This state abstraction gives us a compact way of representing the C and V functions, and

speeds up the algorithm.

In the experiments of this section, we assume that there are four agents (AGVs) in the

environment. The experimental results were generated with the following model parame-

ters. The inter-arrival time for parts at the warehouse is uniformly distributed with a mean

of 4 sec and variance of 1 sec. The percentage of Part1, Part2, Part3, and Part4 in the part

arrival process are 20, 28, 22, and 30 respectively. The time required for assembling the

various parts is normally distributed with means 15, 24, 24, and 30 sec for Part1, Part2,

Part3, and Part4 respectively, and variance 2 sec. The execution time of primitive actions

(right, left, forward, load, and unload) is normally distributed with mean 1000 µ-sec and

variance 50 µ-sec. The execution time for the idle action is also normally distributed with

mean 1 sec and variance 0.1 sec. Table 6.1 summarizes the values of the model parameters

used in the experiments of this section. In this task, each experiment was conducted five

times and the results were averaged.

119

Parameter Distribution Mean (sec) Variance (sec)
Idle Action Normal 1 0.1

Primitive Actions Normal 0.001 0.00005
Assembly Time for Part1 Normal 15 2
Assembly Time for Part2 Normal 24 2
Assembly Time for Part3 Normal 24 2
Assembly Time for Part4 Normal 30 2

Inter-Arrival Time for Parts Uniform 4 1

Table 6.1. Model parameters for the multi-agent AGV scheduling task.

Figure 6.4 shows the throughput of the system for the three algorithms, single-agent

HRL, selfish multi-agent HRL, and Cooperative HRL. As seen in Figure 6.4, agents learn

a little faster initially in the selfish multi-agent method, but after some time the algorithm

results in sub-optimal performance. This is due to the fact that two or more agents select the

same action, but once the first agent completes the task, the other agents might have to wait

for a long time to complete the task, due to the constraints on the number of parts that can

be stored at a particular place. The system throughput achieved using the Cooperative HRL

method is higher than the single-agent HRL and the selfish multi-agent HRL algorithms.

This difference is even more significant in Figure 6.5, when the primitive actions have

longer execution time, almost 1
10th of the average assembly time (the mean execution time

of primitive actions is 2 sec).

Figure 6.6 shows the results from an implementation of the single-agent flat Q-Learning

with the buffer capacity at each station set at 1. As can be seen from the plot, the flat algo-

rithm converges extremely slowly. The throughput at 70, 000 sec has gone up to only 0.07,

compared with 2.6 for the hierarchical single-agent case. Figure 6.7 compares the Cooper-

ative HRL algorithm with several well-known AGV scheduling rules, highest queue first,

nearest station first, and first come first serve, showing clearly the improved performance

of the HRL method.

So far in our experiments in the AGV domain, we only defined root as a cooperative

subtask. Now in our last experiment in this domain, in addition to root, we define navi-

120

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000 30000 35000 40000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Cooperative HRL
Selfish Multiagent HRL

Single-agent HRL

Figure 6.4. This figure shows that the Cooperative HRL algorithm outperforms both the
selfish multi-agent HRL and the single-agent HRL algorithms when the AGV travel time
and load/unload time are very much less compared to the average assembly time.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50000 100000 150000 200000 250000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Cooperative HRL
Selfish Multiagent HRL

Figure 6.5. This figure compares the Cooperative HRL algorithm with the selfish multi-
agent HRL, when the AGV travel time and load/unload time are 1

10th of the average assem-
bly time.

121

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10000 20000 30000 40000 50000 60000 70000 80000 90000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Flat Q-Learning

Figure 6.6. A flat Q-Learner learns the AGV domain extremely slowly showing the need
for using a hierarchical task structure.

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000 30000 35000 40000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Cooperative HRL
First Come First Served Heuristic

Highest Queue First Heuristic
Nearest Station First Heuristic

Figure 6.7. This plot shows that the Cooperative HRL algorithm outperforms three well-
known widely used industrial heuristics for AGV scheduling.

122

gation subtasks at the third level of the hierarchy as cooperative subtasks. Therefore, the

third level of the hierarchy is also a cooperation level and its cooperation set contains all

navigation subtasks at that level (see Figure 6.3). We configure the root and the third level

navigation subtasks to represent joint-actions. Figure 6.8 compares the performance of

the system in these two cases. When the navigation subtasks are configured to represent

joint-actions, learning is considerably slower (since the number of parameters is increased

significantly) and the overall performance is not better. The lack of improvement is due in

part to the fact that the AGV travel is unidirectional, as shown in Figure 6.2, thus coordi-

nation at the navigation level does not improve the performance of the system. However,

there exist problems that adding joint-actions in multiple levels will be worthwhile, even if

convergence is slower, due to better overall performance.

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000 100000

T
hr

ou
gh

pu
t o

f t
he

 s
ys

te
m

Time since start of simulation (sec)

Cooperative HRL - Cooperation at Top Level of the Hierarchy
Cooperative HRL - Cooperation at Top and Third Levels of the Hierarchy

Figure 6.8. This plot compares the performance of the Cooperative HRL algorithm with
cooperation at the top level of the hierarchy vs. cooperation at the top and third levels of
the hierarchy.

123

6.5 Hierarchical Multi-Agent RL with Communication Decisions

Communication is used by agents to obtain local information of their teammates by

paying a certain cost. The Cooperative HRL algorithm described in Section 6.3 works

under three important assumptions, free, reliable, and instantaneous communication, i.e.,

communication cost is zero, no message is lost in the environment, and each agent has

enough time to receive information about its teammates before taking its next action. Since

communication is free, as soon as an agent selects an action at a cooperative subtask,

it broadcasts it to the team. Using this simple rule, and the fact that communication is

reliable and instantaneous, whenever an agent is about to choose an action at an lth level

cooperative subtask, it knows the subtasks in Ul being performed by all its teammates.

However, communication can be costly and unreliable in real-world problems. When

communication is not free, it is no longer optimal for a team that agents always broadcast

actions taken at their cooperative subtasks to their teammates. Therefore, agents must

learn to optimally use communication by taking into account its long term return and its

immediate cost. In the remainder of this chapter, we examine the case that communication

is not free, but still assume that it is reliable and instantaneous. In this section, we first

describe the communication framework and then illustrate how we extend the Cooperative

HRL algorithm to include communication decisions and propose a new algorithm, called

COM-Cooperative HRL. The goal of this algorithm is to learn a hierarchical policy (a set

of policies for all subtasks including the communication subtasks) to maximize the team

utility given the communication cost. Finally, in Section 6.6, we demonstrate the efficacy of

the COM-Cooperative HRL algorithm as well as the relation between the communication

cost and the learned communication policy using a multi-agent taxi domain.

6.5.1 Communication Among Agents

Communication usually consists of three steps: send, answer, and receive. At the send

step ts, agent j decides if communication is necessary, performs a communication ac-

124

tion, and sends a message to agent i. At the answer step ta ≥ ts, agent i receives the

message from agent j, updates its local information using the contents of the message (if

necessary), and sends back the answer (if required). At the receive step tr ≥ ta, agent

j receives the answer of its message, updates its local information, and decides on which

non-communicative action to execute. Generally there are two types of messages in a

communication framework: request and inform. For simplicity, we suppose that relative

ordering of messages do not change, which means that for two communication actions c1

and c2, if ts(c1) < ts(c2) then ta(c1) ≤ ta(c2) and tr(c1) ≤ tr(c2). The following three

types of communication actions are commonly used in a communication model:

• Tell(j, i): agent j sends an inform message to agent i.

• Ask(j, i): agent j sends a request message to agent i, which is answered by agent i

with an inform message.

• Sync(j, i): agent j sends an inform message to agent i, which is answered by agent

i with an inform message.

In the Cooperative HRL algorithm described in Section 6.3, we assume free, reliable

and instantaneous communication. Hence, the communication protocol of this algorithm

is as follows: whenever an agent chooses an action at a cooperative subtask, it executes a

Tell communication action and sends its selected action as an inform message to all other

agents. As a result, when an agent is going to choose an action at an lth level cooperative

subtask, it knows actions being performed by all other agents in Ul. Tell and inform are the

only communication action and type of message used in the communication protocol of the

Cooperative HRL algorithm.

6.5.2 A Hierarchical Multi-Agent RL Algorithm with Communication Decisions

When communication is costly in the Cooperative HRL algorithm, it is no longer op-

timal for the team that each agent broadcasts its action to all its teammates. In this case,

125

each agent must learn to optimally use the communication. To address the communication

cost in the COM-Cooperative HRL algorithm, we add a communication level to the task

graph of the problem below each cooperation level, as shown in Figure 6.9 for the trash

collection task. In this algorithm, when an agent is going to make a decision at an lth level

cooperative subtask, it first decides whether to communicate (takes Communicate action)

with the other agents to acquire their actions in Ul, or do not communicate (takes Not-

Communicate action) and selects its action without inquiring new information about its

teammates. Agents decide about communication by comparing the expected value of com-

munication plus the communication cost, Q̂(Parent(Com), s, Com)+ComCost, with the

expected value of not communicating with the other agents, Q̂(Parent(NotCom), s, Not−

Com). If agent j decides not to communicate, it chooses an action like a selfish agent

by using its action-value (not joint-action-value) function Q̂j(NotCom, s, a), where a ∈

Children(NotCom). When it decides to communicate, it first takes communication action

Ask(j, i), ∀i ∈ {1, . . . , j − 1, j + 1, . . . , n}, where n is the number of agents, and sends

a request message to all other agents. Other agents reply by taking communication action

Tell(i, j) and send their action in Ul as an inform message to agent j. Then agent j uses its

joint-action-value (not action-value) function Q̂j(Com, s, a1, . . . , aj−1, aj+1, . . . , an, a),

a ∈ Children(Com) to select its next action in Ul. For instance, in the trash collection

task, when agent A1 dumps trash and is going to move to one of the two trash cans, it

should first decide whether to communicate with agent A2 in order to inquire its action in

U1 = {collect trash at T1, collect trash at T2} or not. To make a communication deci-

sion, agent A1 compares Q̂1(Root, s ,NotCom) with Q̂1(Root, s, Com)+ComCost. If it

chooses not to communicate, it selects its action using Q̂1(NotCom, s, a), where a ∈ U1.

If it decides to communicate, after acquiring the action of agent A2 in U1, aA2, it selects its

own action using Q1(Com, s, aA2, a), where a and aA2 both belong to U1.

In the COM-Cooperative HRL, we assume that when an agent decides to communicate,

it communicates with all other agents as described above. We can make the model more

126

Find WallAlign with WallFollow Wall

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Communication Level

Cooperation Level Cooperative Subtask

 Cooperative Subtask (Root)

Communicate Not−Communicate

Collect Trash at T1 Collect Trash at T2 U = Children of the top−level1

Figure 6.9. Task graph of the trash collection problem with communication actions.

complicated by making decision about communication with each individual agent. In this

case, the number of communication actions would be C1
n−1 + C2

n−1 + . . . + Cn−1
n−1 , where

Cq
p is the number of distinct combinations selecting q out of p agents. For instance, in a

three-agent case, communication actions for agent 1 would be communicate with agent 2,

communicate with agent 3, and communicate with both agents 2 and 3. It increases the

number of communication actions and therefore the number of parameters to be learned.

However, there are methods to reduce the number of communication actions in real-world

applications. For instance, we can cluster agents based on their role in the team and assume

each cluster as a single entity to communicate with. It reduces n from the number of agents

to the number of clusters.

In the COM-Cooperative HRL algorithm, Communicate subtasks are configured to store

joint completion function values, and Not-Communicate subtasks are configured to store

completion function values. The joint completion function for agent j, C j(Com, s, a1, . . . ,

aj−1, aj+1, . . . , an, aj) is defined as the expected discounted reward of completing subtask

aj by agent j in the context of the parent task Com, when other agents performing sub-

127

tasks ai,∀i ∈ {1, . . . , j − 1, j + 1, . . . , n}. In the trash collection domain, if agent A1

communicates with agent A2, its value function decomposition would be

Q̂1(Com, s, Collect Trash at T2, Collect Trash at T1) = V̂ 1(Collect Trash at T1, s) +

C1(Com, s, Collect Trash at T2, Collect Trash at T1)

which represents the projected value of agent A1 performing subtask collect trash at T1,

when agent A2 is executing subtask collect trash at T2. Note that this value is decom-

posed into the projected value of subtask collect trash at T1 and the value of completing

subtask Parent(Com) (here root is the parent of subtask Com) after executing subtask

collect trash at T1. If agent A1 does not communicate with agent A2, its value function

decomposition would be

Q̂1(NotCom, s, Collect Trash at T1) = V̂ 1(Collect Trash at T1, s)

+ C 1(NotCom, s, Collect Trash at T1)

which represents the projected value of agent A1 performing subtask collect trash at T1,

regardless of the action being executed by agent A2.

Again, the V̂ and C values are learned through a standard TD-learning method based on

sample trajectories similar to the one presented in Algorithm 4. Completion function values

for an action in Ul is updated when we take an action under Not-Communicate subtask, and

joint completion function values for an action in Ul is updated when it is selected under

Communicate subtask. In the later case, the actions selected in Ul by the other agents are

known as a result of communication and are used to update the joint completion function

values.

128

6.6 Experimental Results for the COM-Cooperative HRL Algorithm

In this section, we demonstrate the performance of the COM-Cooperative HRL algo-

rithm proposed in Section 6.5.2 using a multi-agent taxi problem. We also investigate the

relation between the communication policy and the communication cost in this domain.

Consider a 5-by-5 grid world inhabited by two taxis (T1 and T2) shown in Figure 6.10.

There are four stations in this domain, marked as B(lue), G(reen), R(ed), and Y(ellow).

The task is continuing, passengers appear according to a fixed passenger arrival rate4 at

these four stations and wish to be transported to one of the other stations chosen randomly.

Taxis must go to the location of a passenger, pick up the passenger, go to her/his destina-

tion station, and drop the passenger there. The goal here is to increase the throughput of

the system, which is measured in terms of the number of passengers dropped off at their

destinations per 5, 000 time steps, and to reduce the average waiting time per passenger.

This problem can be decomposed into subtasks and the resulting task graph is shown in

Figure 6.10. Taxis need to learn three skills here. First, how to do each subtask, such

as navigate to B, G, R, or Y , and when to perform Pickup or Putdown action. Second,

the order to do the subtasks, i.e., for instance go to a station and pickup a passenger be-

fore heading to the passenger’s destination. Finally, how to communicate and coordinate

with each other, i.e., if taxi T1 is on its way to pick up a passenger at location Blue, taxi

T2 should serve a passenger at one of the other stations. The state variables in this task

are the locations of taxis (25 values each), status of taxis (5 values each, taxi is empty or

transporting a passenger to one of the four stations), and status of stations B, G, R, and Y

(4 values each, station is empty or has a passenger whose destination is one of the other

three stations). Thus, in the multi-agent flat case, the size of the state space would grow

to 4 × 106. The size of the Q table is this number multiplied by the number of primitive

actions 10, which is 4× 107. In the selfish multi-agent HRL algorithm, using state abstrac-

4Passenger arrival rate 10 indicates that on average, one passenger arrives at stations every 10 time steps.

129

tion and the fact that each agent stores only its own state variables, the number of the C

and V values to be learned is reduced to 2 × 135, 895 = 271, 790, which is 135,895 val-

ues for each agent. In the Cooperative HRL algorithm, the number of values to be learned

would be 2×729, 815 = 1, 459, 630. Finally in the COM-Cooperative HRL algorithm, this

number would be 2 × 934, 615 = 1, 869, 230. In the COM-Cooperative HRL, we define

root as a cooperative subtask and the highest level of the hierarchy as a cooperation level

as shown in Figure 6.10. Thus, root is the only member of the cooperation set at that level,

and U1 = Aroot = {GetB, GetG, GetR, GetY, Wait, Put}. The joint-action space

for root is specified as the cross product of the root action set and U1. Finally, τcontinue

termination scheme is used for joint-action selection in this domain. All the experiments in

this section were repeated five times and the results were averaged.

T1: Taxi 1
T2: Taxi 2
B: Blue Station
G: Green Station
R: Red Station
Y: Yellow Station

0 1 2 3 4

0

1

2

3

4

T1

T2

G

BY

R Communication
Level

Putdown

Children of
the top−level
Cooperative
Subtask (Root)

Pick B

Get B

Pick G Pick R Pick YNav B Nav RNav G Nav Y

Root Cooperative SubtaskCooperation Level

Communicate Not−Communicate

PutGet G Get R Get Y Wait

North South EastWest

Nav

Figure 6.10. A multi-agent taxi domain and its associated task graph.

Figures 6.11 and 6.12 show the throughput of the system and the average waiting time

per passenger for four algorithms, single-agent HRL, selfish multi-agent HRL, Cooperative

HRL, and COM-Cooperative HRL when communication cost is zero.5 As seen in Figures

5The COM-Cooperative HRL uses the task graph in Figure 6.10. The Cooperative HRL uses the same
task graph without the communication level.

130

6.11 and 6.12, Cooperative HRL and COM-Cooperative HRL with ComCost = 0 have

better throughput and average waiting time per passenger than selfish multi-agent HRL

and single-agent HRL. The COM-Cooperative HRL learns slower than Cooperative HRL,

due to more parameters to be learned in this model. However, it eventually converges to

the same performance as the Cooperative HRL does.

0 5 10 15

x 10
4

300

350

400

450

500

550

600

650

700

750

Number of Steps (Passenger Arrival Rate = 10)

T
h

ro
u

g
h

p
u

t
o

f
th

e
S

ys
te

m

Single−Agent HRL
Selfish Multiagent HRL
Cooperative HRL
COM−Cooperative HRL, ComCost = 0

Figure 6.11. This figure shows that the Cooperative HRL and the COM-Cooperative HRL
with ComCost = 0 have better throughput than the selfish multi-agent HRL and the single-
agent HRL.

Figure 6.13 compares the average waiting time per passenger for the multi-agent self-

ish HRL and the COM-Cooperative HRL with ComCost = 0 for three different passenger

arrival rates (5, 10, and 20). It demonstrates that as the passenger arrival rate becomes

smaller, the coordination among taxis becomes more important. When taxis do not coordi-

nate, it is possible that both taxis go to the same station. In this case, the first taxi picks up

the passenger and the other one returns empty. This case can be avoided by incorporating

coordination in the system. However, when the passenger arrival rate is high, there is a

chance that a new passenger arrives after the first taxi picked up the previous passenger and

131

2 4 6 8 10 12 14

x 10
4

20

25

30

35

40

45

50

55

60

65

Number of Steps (Passenger Arrival Rate = 10)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Single−Agent HRL
Selfish Multiagent HRL
Cooperative HRL
COM−Cooperative HRL, ComCost = 0

Figure 6.12. This figure shows that the average waiting time per passenger in the Coop-
erative HRL and the COM-Cooperative HRL with ComCost = 0 is less than the selfish
multi-agent HRL and the single-agent HRL.

before the second taxi reaches the station. This passenger will be picked up by the second

taxi. In this case, coordination would not be as crucial as the case when the passenger

arrival rate is low.

Figure 6.14 demonstrates the relation between the communication policy and the com-

munication cost. These two figures show the throughput and the average waiting time per

passenger for the selfish multi-agent HRL and the COM-Cooperative HRL when the com-

munication cost equals 0, 1, 5, and 10. In both figures, as the communication cost increases,

the performance of the COM-Cooperative HRL becomes closer to the selfish multi-agent

HRL. It indicates that when communication is expensive, agents learn not to communicate

and to be selfish.

132

2 4 6 8 10 12 14

x 10
4

15

20

25

30

35

40

Number of Steps (Passenger Arrival Rate = 5)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0

2 4 6 8 10 12 14

x 10
4

15

20

25

30

35

40

Number of Steps (Passenger Arrival Rate = 10)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0

2 4 6 8 10 12 14

x 10
4

15

20

25

30

35

40

Number of Steps (Passenger Arrival Rate = 20)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0

Figure 6.13. This figure compares the average waiting time per passenger for the selfish
multi-agent HRL and the COM-Cooperative HRL with ComCost = 0 for three different
passenger arrival rates (5, 10, and 20). It shows that coordination among taxis becomes
more crucial as the passenger arrival rate becomes smaller.

133

0 2 4 6 8 10 12 14 16

x 10
4

400

450

500

550

600

650

700

Number of Steps (Passenger Arrival Rate = 5)

T
h

ro
u

g
h

p
u

t
o

f
th

e
S

ys
te

m

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0
COM−Cooperative HRL, ComCost = 1
COM−Cooperative HRL, ComCost = 5
COM−Cooperative HRL, ComCost = 10

2 4 6 8 10 12 14 16

x 10
4

18

20

22

24

26

28

30

Number of Steps (Passenger Arrival Rate = 5)

A
ve

ra
g

e
W

ai
ti

n
g

 T
im

e
p

er
 P

as
se

n
g

er

Selfish Multiagent HRL
COM−Cooperative HRL, ComCost = 0
COM−Cooperative HRL, ComCost = 1
COM−Cooperative HRL, ComCost = 5
COM−Cooperative HRL, ComCost = 10

Figure 6.14. This figure shows that as communication cost increases, the throughput (top)
and the average waiting time per passenger (bottom) of the COM-Cooperative HRL be-
come closer to the selfish multi-agent HRL. It indicates that agents learn to be selfish when
communication is expensive.

134

6.7 Summary and Future Work

In this chapter, we studied methods for learning to communicate and act in cooperative

multi-agent systems using hierarchical reinforcement learning. The key idea underlying

our approach is that coordination skills are learned much more efficiently if agents have a

hierarchical representation of the task structure. The use of hierarchy speeds up learning

in multi-agent domains by making it possible to learn coordination skills at the level of

subtasks instead of primitive actions. A further advantage of this approach over flat learning

methods is that, since high-level subtasks take a long time to complete, communication is

needed fairly infrequently. We proposed two new cooperative multi-agent HRL algorithms,

Cooperative HRL and COM-Cooperative HRL using the above idea. In both algorithms,

agents are homogeneous, i.e., use the same task decomposition, learning is decentralized,

and each agent learns three interrelated skills: how to perform subtasks, which order to do

them in, and how to coordinate with other agents.

In Cooperative HRL, we assume communication is free and therefore agents do not

need to decide if communication with their teammates is necessary. We demonstrate the

efficacy of this algorithm using a four-agent AGV scheduling problem. We compare the

performance of the Cooperative HRL algorithm with other algorithms such as selfish multi-

agent HRL, single-agent HRL, and flat Q-learning in this domain. We also show that

Cooperative HRL outperforms widely used industrial heuristics, such as “first come first

serve”, “highest queue first”, and “nearest station first”.

In COM-Cooperative HRL, we address the issue of rational communicative behavior

among autonomous agents. The goal is to learn both action and communication policies

that together optimize the task given the communication cost. This algorithm is an exten-

sion of Cooperative HRL by including communication decisions in the model. We study

the empirical performance of the COM-Cooperative HRL algorithm as well as the relation

between the communication cost and the communication policy using a multi-agent taxi

problem.

135

There are a number of directions for future work which can be briefly outlined. An

immediate question that arises is to define the classes of cooperative multi-agent problems

in which the proposed algorithms converge to a good approximation of optimal policy. The

experiments of this chapter show that the effectiveness of these algorithms is most apparent

in tasks where agents rarely interact at low levels (for example in the trash collection task,

two robots may rarely need to exit through the same door at the same time). However,

the algorithms can be generalized and adapted to constrained environments where agents

are constantly running into one another (for example ten robots in a small room all trying

to leave the room at the same time) by extending cooperation to lower levels of the hier-

archy. This will result in a much larger set of action values that need to be learned, and

consequently learning will be much slower, as shown in the AGV experiment depicted in

Figure 6.8. A number of extensions would be useful, from studying the scenario where

agents are heterogeneous, to recognizing the high-level subtasks being performed by other

agents using a history of observations (plan recognition and activity modeling) instead of

direct communication. In the later case, we assume that each agent can observe its team-

mates and uses its observations to extract their high-level subtasks. Good examples for this

approach are games such as soccer, football or basketball, in which players often extract

the strategy being performed by their teammates using recent observations instead of direct

communication. Saria and Mahadevan (2004) presented a theoretical framework for online

probabilistic plan recognition in cooperative multi-agent systems. Their model extends the

abstract hidden Markov model (AHMM) (Bui et al., 2002) to cooperative multi-agent do-

mains. We believe that the model presented by Saria and Mahadevan can be combined with

the learning algorithms proposed in this chapter to reduce communication by learning to

recognize the high-level subtasks being performed by the other agents.

Another direction for future work is to study different termination schemes for compos-

ing temporally extended actions. We used τcontinue termination strategy in the algorithms

proposed in this chapter. However, it would be beneficial to investigate τany and τall termi-

136

nation schemes in our model. Many other manufacturing and robotics problems can benefit

from these algorithms. Combining the proposed algorithms with function approximation

and factored action models, which makes them more appropriate for continuous state prob-

lems, is also an important area of research. In this direction, we believe that the algorithms

proposed in this chapter can be combined with the hierarchical policy gradient algorithms

proposed in Chapter 5 to be used in multi-agent domains with continuous state and/or ac-

tion. Finally, studying those communication features that have not been considered in our

model such as message delay and probability of loss is another fundamental problem that

needs to be addressed.

137

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation demonstrates that by exploiting domain-specific properties, we can

design more efficient hierarchical reinforcement learning (HRL) algorithms and scale up

HRL to more complex large-scale problems. This chapter provides a summary of the meth-

ods and algorithms presented in this thesis, along with future questions that remain open.

7.1 Summary

In this dissertation, we investigated the use of hierarchy and abstraction as a means

of solving complex sequential decision making problems, such as those with continuous

state and/or continuous action spaces, and domains with multiple cooperative agents. We

developed several novel extensions to HRL and designed algorithms that are appropriate

for such problems.

Recent years have seen numerous successes of reinforcement learning (RL) approaches

to control and decision making under uncertainty (Tesauro, 1994; Zhang and Dietterich,

1995; Singh and Bertsekas, 1996; Crites and Barto, 1998; Ng et al., 2004). However, the

existing RL methods suffer from the curse of dimensionality: the exponential growth of

the number of parameters to be learned with the size of any compact encoding of system

state (Bellman, 1957). Recent attempts to combat the curse of dimensionality have turned

to principled ways of exploiting abstraction in RL, which leads naturally to hierarchical

control architectures and associated learning algorithms (Barto and Mahadevan, 2003). Al-

though HRL approaches scale better than flat RL methods to high dimensional domains,

they still suffer from the curse of dimensionality. Moreover, HRL methods have so far

138

only been studied in a narrow context: they have been investigated for the discrete-time

discounted reward SMDP model; they have all been value function RL methods; and, they

have only been studied in single-agent domains. The methods and algorithms developed

in this dissertation expand the context and scope of HRL. They use prior knowledge in a

principled way, and extend the existing HRL frameworks and algorithms to problems with

continuous state and/or action spaces, and domains with multiple cooperative agents.

In Chapter 4, we presented new discrete-time and continuous-time hierarchically op-

timal average reward RL (HAR) and recursively optimal average reward RL (RAR) algo-

rithms applicable to continuing tasks, including manufacturing, scheduling, queuing, and

inventory control. These algorithms are based on the average-reward semi-Markov de-

cision process (SMDP) model, which has been shown to be more appropriate for a wide

class of continuing tasks than the better studied discounted reward SMDP model. The HAR

algorithms aim to find a hierarchical policy within the space of policies defined by the hi-

erarchical decomposition that maximizes the global gain. The RAR algorithms formulate

subtasks in the hierarchy as continuing average reward problems, where the goal at each

subtask is to maximize its gain given the policies of its children. We investigated the condi-

tions under which the policy learned by the RAR algorithm at each subtask is independent

of the context in which it is executed and therefore can be reused by other hierarchies.

We demonstrated the performance of the proposed algorithms using two automated guided

vehicle (AGV) scheduling tasks.

In Chapter 5, we described HPGRL, a family of hierarchical policy gradient RL al-

gorithms for learning in domains with continuous state and/or continuous action spaces.

We compared the performance of this family of algorithms with a hierarchical value func-

tion reinforcement learning (VFRL) algorithm and a flat RL algorithm in a simple taxi-fuel

problem. The results demonstrated that the HPGRL algorithm converges slower than the

hierarchical VFRL algorithm. To accelerate learning in HPGRL algorithms, we proposed

a family of hierarchical hybrid algorithms in which subtasks located at high level(s) of the

139

hierarchy are formulated as VFRL, and subtasks located at low level(s) of the hierarchy are

defined as policy gradient reinforcement learning (PGRL) problems. We used a continuous

state and action ship steering task to illustrate this family of algorithms and to demonstrate

their performance.

In Chapter 6, we studied methods for learning to communicate and act in cooperative

multi-agent systems using hierarchical reinforcement learning. The key idea underlying

our approach is that coordination skills are learned much more efficiently if agents have a

hierarchical representation of the task structure. The use of hierarchy speeds up learning

in multi-agent domains by making it possible to learn coordination skills at the level of

subtasks instead of primitive actions. A further advantage of this approach over flat learning

methods is that, since high-level subtasks take a long time to complete, communication is

needed fairly infrequently. We proposed two new cooperative multi-agent HRL algorithms,

Cooperative HRL and COM-Cooperative HRL using the above idea. In both algorithms,

agents are homogeneous, i.e., use the same task decomposition, learning is decentralized

and each agent learns three interrelated skills: how to perform subtasks, which order to do

them in, and how to coordinate with other agents.

In Cooperative HRL, we assume communication is free and therefore agents do not

need to decide if communication with their teammates is necessary. We demonstrated

the efficacy of this algorithm using a four-agent AGV scheduling problem. We compared

the performance of the Cooperative HRL algorithm with other algorithms such as selfish

multi-agent HRL, single-agent HRL, and flat Q-learning in this domain. We also showed

that Cooperative HRL outperforms widely used industrial heuristics, such as “first come

first serve”, “highest queue first”, and “nearest station first”.

In COM-Cooperative HRL, we addressed the issue of rational communicative behavior

among autonomous agents. The goal is to learn both action and communication policies

that together optimize the task given the communication cost. This algorithm is an exten-

sion of Cooperative HRL by including communication decisions in the model. We studied

140

the empirical performance of the COM-Cooperative HRL algorithm as well as the relation

between the communication cost and the communication policy using a multi-agent taxi

problem.

7.2 Future Work

There are a number of directions for future work which are briefly outlined.

Hierarchical Average Reward Reinforcement Learning

An immediate question that arises is proving the asymptotic convergence of the algo-

rithms proposed in Chapter 4 to hierarchically and recursively optimal average reward poli-

cies. These results should provide some theoretical validity to these algorithms, in addition

to their empirical effectiveness demonstrated in Chapter 4. Studying other local optimality

criteria for subtasks in a hierarchy is an interesting problem that needs to be addressed. It

helps to develop more effective recursively optimal average reward RL algorithms. It is

also obvious that many other manufacturing and robotics problems can benefit from the

algorithms proposed in Chapter 4.

.
Hierarchical Policy Gradient Reinforcement Learning

The algorithms proposed in Chapter 5 are based on the assumption that the overall task

(root of the hierarchy) is episodic. One direction for future work is to reformulate these

algorithms for the case when the overall task is continuing. In this case, the root task is

formulated as a continuing problem with the average reward as its performance function.

Since the policy learned at root involves policies of its children, the type of optimality

achieved at root depends on how we formulate other subtasks in the hierarchy. Different

notions of optimality in hierarchical average reward presented in Chapter 4 can be used to

develop new HPGRL algorithms for continuing problems.

Although the algorithms proposed in Chapter 5 give us the ability to deal with con-

tinuous state and/or continuous action spaces, they are not still appropriate for real-world

141

problems in which the speed of learning is crucial. The results of the ship steering task in-

dicate that in order to apply the proposed algorithms to real-world domains, more powerful

PGRL algorithms are needed — algorithms that need a smaller number of samples, and are

less computationally expensive.

Hierarchical Multi-Agent Reinforcement Learning

An immediate question that arises is to define the classes of cooperative multi-agent

problems in which the algorithms proposed in Chapter 6 converge to a good approximation

of optimal policy. The experiments of this chapter show that the effectiveness of these al-

gorithms is most apparent in tasks where agents rarely interact at low levels (for example

in the trash collection task, two robots may rarely need to exit through the same door at

the same time). However, the algorithms can be generalized and adapted to constrained

environments where agents are constantly running into one another (for example ten robots

in a small room all trying to leave the room at the same time) by extending cooperation

to lower levels of the hierarchy. This will result in a much larger set of action values that

need to be learned, and consequently learning will be much slower, as shown in the AGV

experiment depicted in Figure 6.8. A number of extensions would be useful, from study-

ing the scenario where agents are heterogeneous, to recognizing the high-level subtasks

being performed by other agents using a history of observations (plan recognition and ac-

tivity modeling) instead of direct communication. In the later case, we assume that each

agent can observe its teammates and uses its observations to extract their high-level sub-

tasks. Good examples for this approach are games such as soccer, football or basketball, in

which players often extract the strategy being performed by their teammates using recent

observations instead of direct communication. Saria and Mahadevan (2004) presented a

theoretical framework for online probabilistic plan recognition in cooperative multi-agent

systems. Their model extends the abstract hidden Markov model (AHMM) (Bui et al.,

2002) to cooperative multi-agent domains. We believe that the model presented by Saria

142

and Mahadevan can be combined with the learning algorithms proposed in Chapter 6 to

reduce communication by learning to recognize the high-level subtasks being performed

by the other agents.

Another direction for future work in this area is to study different termination schemes

for composing temporally extended actions. We used τcontinue termination strategy in the

algorithms proposed in Chapter 6. However, it would be beneficial to investigate τany and

τall termination schemes in our model. Many other manufacturing and robotics problems

can benefit from these algorithms. Combining these algorithms with function approxi-

mation and factored action models, which makes them more appropriate for continuous

state problems, is also an important area of research. In this direction, we believe that the

algorithms proposed in Chapter 6 can be combined with the hierarchical policy gradient

algorithms proposed in Chapter 5 to be used in multi-agent domains with continuous state

and/or action. Finally, studying those communication features that have not been consid-

ered in our model such as message delay and probability of loss is another fundamental

problem that needs to be addressed.

7.3 Closing Remarks

In this dissertation, we exploit domain-specific properties to design more efficient HRL

algorithms. These algorithms extend HRL to solving complex sequential decision mak-

ing problems such as those with continuous state and/or action spaces and domains with

multiple cooperative agents. However, many issues remain to be studied before learning

methods can be deployed in practical settings. In this chapter, we outlined a few open direc-

tions that are particularly related to the methods developed in this dissertation. Of course,

there are many other more general open questions that must be addressed before effective

learning techniques can be designed for tackling large-scale complex systems. Ultimately,

we hope that such learning methods will aid human users in solving complex problems,

which require learning and adaptation.

143

APPENDIX

INDEX OF SYMBOLS

Here we present a list of the symbols used in this dissertation to hopefully alleviate the

difficulty for the reader, or at least provide a handy reference.

Notation Definition
IR set of real numbers
IN set of natural numbers
E expected value
M an MDP model
S set of states
A set of actions
As set of admissible actions in state s

P transition probability function in MDP and multi-step transition probability
function in SMDP

P (s′|s, a) probability that action a causes transition from state s to state s′ in an MDP
P µ transition probability matrix of policy µ in an MDP
P̄

µ limiting matrix of policy µ in an MDP
R reward function

r(s, a) reward of taking action a in state s

I initial state distribution
µ a policy

µ(a|s) probability that policy µ selects action a in state s

µ∗ optimal policy
γ discount factor
α learning rate parameter

V µ value function of policy µ in flat models
V µ hierarchical value function of hierarchical policy µ in hierarchical models
V̂ µ projected value function of hierarchical policy µ in hierarchical models
V ∗ optimal value function
Qµ action-value function of policy µ in flat models
Qµ hierarchical action-value function of hierarchical policy µ in hierarchical models
Q̂µ projected action-value function of hierarchical policy µ in hierarchical models
Q∗ optimal action-value function
Γ∗ Bellman operator

144

Notation Definition
gµ average reward or gain of policy µ

gµ global gain under hierarchical policy µ

g
µ
i local gain of subtask Mi under hierarchical policy µ

g∗ gain of optimal policy
Hµ average-adjusted value function of policy µ in flat models
Hµ hierarchical average-adjusted value function of hierarchical policy µ

in hierarchical models
Ĥµ projected average-adjusted value function of hierarchical policy µ

in hierarchical models
H∗ optimal average-adjusted value function
Lµ average-adjusted action-value function of policy µ in flat models
Lµ hierarchical average-adjusted action-value function of hierarchical

policy µ in hierarchical models
L̂µ projected average-adjusted action-value function of hierarchical

policy µ in hierarchical models
L∗ optimal average-adjusted action-value function

P (s′, N |s, a) probability that action a will cause the system to transition from
state s to state s′ in N time steps

m(s′|s, a) probability that an SMDP occupies state s′ at the next decision epoch
given that the agent takes action a in state s at the current decision epoch

mµ transition probability matrix of the embedded Markov chain of an SMDP
for policy µ

m̄µ limiting matrix of the embedded Markov chain of an SMDP for policy µ

y(s, a) expected number of transition steps until the next decision epoch
H a hierarchy
Mi subtask Mi in a hierarchy
Si set of states for subtask Mi in a hierarchy
|Si| cardinality of set of states Si

Ai set of actions for subtask Mi in a hierarchy
Ri reward function for subtask Mi in a hierarchy
Ii initiation set for subtask Mi in a hierarchy
Ti termination set for subtask Mi in a hierarchy
sTi

a terminal state of subtask Mi in a hierarchy ; sTi
∈ Ti

µi a policy for subtask Mi in a hierarchy
µ a hierarchical policy

P
µ
i multi-step transition probability function of subtask Mi

P
µ
i (s′, N |s) probability that action µi(s) causes transition from state s to

state s′ in N primitive steps under hierarchical policy µ

F
µ
i multi-step abstract transition probability function of subtask Mi

F
µ
i (s′, N |s) probability of transition from state s to state s′ in N abstract actions taken

by subtask Mi under hierarchical policy µ

Pµ single-step transition probability function under hierarchical policy µ

Pµ(s′|s) probability that hierarchical policy µ will cause the system to transition
from state s to state s′ at the level of primitive actions

m
µ
i transition probability matrix of the Markov chain at subtask Mi for

hierarchical policy µ

145

Notation Definition
m̄

µ
i limiting matrix of the Markov chain at subtask Mi for hierarchical policy µ

Ω set of possible values for Task-Stack in a hierarchy
X = Ω× S joint state space of Task-Stack values and states in a hierarchy
x = (ω, s) joint state value x formed by Task-Stack value ω and state value s in a

hierarchy
ω ↗ i popping subtask Mi off Task-Stack with content ω in a hierarchy
i↘ ω pushing subtask Mi onto Task-Stack with content ω in a hierarchy
Cµ completion function of hierarchical policy µ

CEµ external completion function of hierarchical policy µ

πµ steady state probability vector of the Markov chain defined by policy µ

πµ(s) steady state probability of being in state s for the Markov chain defined by
policy µ

θ set of policy parameters
θi set of policy parameters for subtask Mi

µi(θi) policy for subtask Mi corresponding to parameter vector θi

µ(θ) hierarchical policy corresponding to parameter vector θ

χi(θ) weighted reward-to-go of subtask Mi under hierarchical policy
parameterized by parameter set θ

Ji(s; θ) reward-to-go of subtask Mi in state s under hierarchical policy
parameterized by parameter set θ

Υ set of a finite collection of agents in multi-agent SMDP

146

BIBLIOGRAPHY

Abounadi, J., Bertsekas, D. P., and Borkar, V. S. (2001). Learning algorithms for Markov
decision processes with average cost. SIAM Journal on Control and Optimization,
40:681–698.

Andre, D. (2003). Programmable Reinforcement Learning Agents. PhD thesis, University
of California at Berkeley.

Andre, D. and Russell, S. J. (2001). Programmable reinforcement learning agents. In
Proceedings of Advances in Neural Information Processing Systems 13, pages 1019–
1025. MIT Press.

Andre, D. and Russell, S. J. (2002). State abstraction for programmable reinforcement
learning agents. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence, pages 119–125.

Askin, R. and Standridge, C. (1993). Modeling and Analysis of Manufacturing Systems.
John Wiley and Sons.

Balch, T. and Arkin, R. (1998). Behavior-based formation control for multi-robot teams.
IEEE Transactions on Robotics and Automation, 14:1–15.

Barto, A. and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Systems (Special Issue on Reinforcement Learning), 13:41–77.

Baxter, J. and Bartlett, P. (2001). Infinite-horizon policy-gradient estimation. Journal of
Artificial Intelligence Research, 15:319–350.

Baxter, J., Bartlett, P., and Weaver, L. (2001). Experiments with infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence Research, 15:351–381.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Bernstein, D., Zilberstein, S., and Immerman, N. (2000). The complexity of decentralized
control of Markov decision processes. In Proceedings of the Sixteenth International
Conference on Uncertainty in Artificial Intelligence, pages 32–37.

Bertsekas, D. (1995). Dynamic Programming and Optimal Control. Athena Scientific.

Bertsekas, D. (1998). A new value iteration method for the average cost dynamic program-
ming problem. SIAM on Control and Optimization, 36:742–759.

Bertsekas, D. and Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Athena Scientific.

147

Blackwell, D. (1962). Discrete dynamic programming. Ann. Math. Stat., 33:719–726.

Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
pages 478–485.

Bowling, M. and Veloso, M. (2002). Multiagent learning using a variable learning rate.
Artificial Intelligence, 136:215–250.

Bradtke, S. and Duff, M. (1995). Reinforcement learning methods for continuous-time
Markov decision problems. In Proceedings of Advances in Neural Information Process-
ing Systems 7, pages 393–400. MIT Press.

Brafman, R. and Tennenholtz, M. (1997). Modeling agents as qualitative decision makers.
Artificial Intelligence, 94:217–268.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, pages 14–23.

Bui, H., Venkatesh, S., and West, G. (2002). Policy recognition in the abstract hidden
Markov model. Journal of Artificial Intelligence Research, 17:451–499.

Cao, X., Ren, Z., Bhatnagar, S., Fu, M., and Marcus, S. (2002). A time aggregation ap-
proach to Markov decision processes. Automatica, 38:929–943.

Cassandras, C. and Lafortune, S. (1999). Introduction to Discrete Event Systems. Kluwer
Academic Publishers.

Crites, R. and Barto, A. (1998). Elevator group control using multiple reinforcement learn-
ing agents. Machine Learning, 33:235–262.

Currie, K. and Tate, A. (1991). O-plan: The open planning architecture. Artificial Intelli-
gence, 52(1):1104–1111.

Dayan, P. and Hinton, G. (1993). Feudal reinforcement learning. In Proceedings of Ad-
vances in Neural Information Processing Systems 5, pages 271–278.

de Farias, D. P. (2002). The Linear Programming Approach to Approximate Dynamic
Programming: Theory and Application. PhD thesis, Stanford University.

Dietterich, T. (1998). The MAXQ method for hierarchical reinforcement learning. In
Proceedings of the Fifteenth International Conference on Machine Learning, pages 118–
126.

Dietterich, T. (2000). Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research, 13:227–303.

Dietterich, T. and Wang, X. (2002). Batch value function approximation via support vec-
tors. In Proceedings of Advances in Neural Information Processing Systems 14, pages
1491–1498.

148

Digney, B. (1996). Emergent hierarchical control structures: Learning hierarchical/reactive
relationships in reinforcement learning environments. In From Animals to Animats 4,
pages 363–373.

Drescher, G. (1991). Made-up Minds, A Constructivist Approach to Artificial Intelligence.
MIT Press.

Filar, J. and Vrieze, K. (1997). Competitive Markov Decision Processes. Springer Verlag.

Forestier, J. and Varaiya, P. (1978). Multilayer control of large Markov chains. IEEE
Transactions on Automatic Control, 23(2):298–304.

Gershwin, S. (1994). Manufacturing Systems Engineering. Prentice Hall.

Ghavamzadeh, M. and Mahadevan, S. (2001). Continuous-time hierarchical reinforcement
learning. In Proceedings of the Eighteenth International Conference on Machine Learn-
ing, pages 186–193.

Ghavamzadeh, M. and Mahadevan, S. (2002). Hierarchically optimal average reward re-
inforcement learning. In Proceedings of the Nineteenth International Conference on
Machine Learning, pages 195–202.

Ghavamzadeh, M. and Mahadevan, S. (2003). Hierarchical policy gradient algorithms.
In Proceedings of the Twentieth International Conference on Machine Learning, pages
226–233.

Ghavamzadeh, M. and Mahadevan, S. (2004). Learning to communicate and act using hi-
erarchical reinforcement learning. In Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pages 1114–1121.

Gordon, G. (1999). Approximate Solutions to Markov Decision Processes. PhD thesis,
Carnegie Mellon University.

Guestrin, C., Koller, D., and Parr, R. (2001). Max-norm projections for factored MDPs. In
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence,
pages 673–680.

Guestrin, C., Lagoudakis, M., and Parr, R. (2002). Coordinated reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, pages
227–234.

Hengst, B. (2002). Discovering hierarchy in reinforcement learning with HEXQ. In Pro-
ceedings of the Nineteenth International Conference on Machine Learning, pages 243–
250.

Ho, Y. and Cao, X. (1991). Perturbation Analysis of Discrete Event Dynamic Systems.
Kluwer.

Howard, R. (1960). Dynamic Programming and Markov Processes. MIT Press.

149

Howard, R. (1971). Dynamic Probabilistic Systems: Semi-Markov and Decision Processes.
John Wiley and Sons.

Hu, J. and Wellman, M. (1998). Multiagent reinforcement learning: Theoretical framework
and an algorithm. In Proceedings of the Fifteenth International Conference on Machine
Learning, pages 242–250.

Huber, M. and Grupen, R. (1997). A feedback control structure for online learning tasks.
Robotics and Autonomous Systems, 22:303–315.

Jaakkola, T., Jordan, M., and Singh, S. (1994). On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6):1185–1201.

Jonsson, A. and Barto, A. (2005). A causal approach to hierarchical decomposition of fac-
tored MDPs. In Proceedings of the Twenty Second International Conference on Machine
Learning.

Kaelbling, L. (1993a). Hierarchical reinforcement learning: Preliminary results. In Pro-
ceedings of the Tenth International Conference on Machine Learning, pages 167–173.

Kaelbling, L. (1993b). Learning to achieve goals. In Proceedings of the Thirteenth Inter-
national Joint Conference on Artificial Intelligence, pages 1094–1098.

Kaelbling, L., Littman, M., and Moore, A. (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285.

Kearns, M., Littman, M., and Singh, S. (2001). Graphical models for game theory. In
Proceedings of the Thirteenth International Conference on Uncertainty in Artificial In-
telligence, pages 253–260.

Kearns, M., Mansour, Y., and Ng, A. (2000). Approximate planning in large POMDPs
via reusable trajectories. In Proceedings of Advances in Neural Information Processing
Systems 12, pages 1001–1007. MIT Press.

Kimura, H., Yamamura, M., and Kobayashi, S. (1995). Reinforcement learning by stochas-
tic hill-climbing on discounted reward. In Proceedings of the Twelfth International Con-
ference on Machine Learning, pages 295–303.

Klein, C. and Kim, J. (1996). AGV dispatching. International Journal of Production
Research, 34:95–110.

Knoblock, C. (1990). Learning abstraction hierarchies for problem solving. In Proceedings
of the Eight National Conference on Artificial Intelligence, pages 923–928.

Kokotovic, P., Khalil, H., and O’Reilly, J. (1986). Singular Perturbation Methods in Con-
trol: Analysis and Design. Academic Press.

Koller, D. and Milch, B. (2001). Multiagent influence diagrams for representing and solv-
ing games. In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, pages 1027–1034.

150

Koller, D. and Parr, R. (2000). Policy iteration for factored MDPs. In Proceedings of
the Sixteenth International Conference on Uncertainty in Artificial Intelligence, pages
326–334.

Konda, V. (2002). Actor-Critic Algorithms. PhD thesis, Massachusetts Institute of Tech-
nology.

Korf, R. (1985). Macro-operators: A weak method for learning. Artificial Intelligence,
26(1):35–77.

La-Mura, P. (2000). Game networks. In Proceedings of the Sixteenth International Con-
ference on Uncertainty in Artificial Intelligence.

Laird, J., Rosenbloom, P., and Newell, A. (1986). Chunking in SOAR: The anatomy of a
general learning mechanism. Machine Learning, 1:11–46.

Lesser, V., Ortiz, C., and Tambe, M. (2003). Distributed Sensor Networks: A Multiagent
Perspective. Kluwer Academic Publishers.

Lin, L. (1993). Reinforcement Learning for Robots using Neural Networks. PhD thesis,
Carnegie Mellon University.

Littman, M. (1994). Markov games as a framework for multiagent reinforcement learning.
In Proceedings of the Eleventh International Conference on Machine Learning, pages
157–163.

Littman, M. (2001). Friend-or-foe Q-learning in general-sum games. In Proceedings of the
Eighteenth International Conference on Machine Learning, pages 322–328.

Littman, M., Kearns, M., and Singh, S. (2002). An efficient exact algorithm for singly con-
nected graphical games. In Proceedings of Advances in Neural Information Processing
Systems 14, pages 817–824. MIT Press.

Mahadevan, S. (1996). Average reward reinforcement learning: foundations, algorithms,
and empirical results. Machine Learning, 22:159–196.

Mahadevan, S. and Connell, J. (1992). Automatic programming of behavior-based robots
using reinforcement learning. Artificial Intelligence, 55:311–365.

Mahadevan, S., Khaleeli, N., and Marchalleck, N. (1997a). Designing agent controllers
using discrete-event Markov models. In Proceedings of the AAAI Fall Symposium on
Model-Directed Autonomous Systems.

Mahadevan, S., Marchalleck, N., Das, T., and Gosavi, A. (1997b). Self-improving factory
simulation using continuous-time average reward reinforcement learning. In Proceed-
ings of the Fourteenth International Conference on Machine Learning, pages 182–190.

Mannor, S., Menache, I., Hoze, A., and Klein, U. (2004). Dynamic abstraction in re-
inforcement learning via clustering. In Proceedings of the Twenty-First International
Conference on Machine Learning, pages 560–567.

151

Marbach, P. (1998). Simulated-Based Methods for Markov Decision Processes. PhD thesis,
Massachusetts Institute of Technology.

Mataric, M. (1997). Reinforcement learning in the multi-robot domain. Autonomous
Robots, 4:73–83.

McGovern, A. and Barto, A. (2001). Automatic discovery of subgoals in reinforcement
learning using diverse density. In Proceedings of the Eighteenth International Confer-
ence on Machine Learning, pages 361–368.

Mealeau, N., Peshkin, L., Kim, K.-E., and Kaelbling, L. (1999). Learning finite-state
controllers for partially observable environments. In Proceedings of the Fifteenth Inter-
national Conference on Uncertainty in Artificial Intelligence, pages 427–436.

Menache, I., Mannor, S., and Shimkin, N. (2002). Q-cut dynamic discovery of subgoals
in reinforcement learning. In Proceedings of the Thirteenth European Conference on
Machine Learning, pages 295–306.

Miller, W., Sutton, R., and Werbos, P. (1990). Neural Networks for Control. MIT Press.

Moore, A. and Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less
data and less real time. Machine Learning, 13:103–130.

Morimoto, J. and Doya, K. (2001). Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning. Robotics and Autonomous Systems, 36:37–51.

Ng, A. (2003). Shaping and Policy Search in Reinforcement Learning. PhD thesis, Univer-
sity of California at Berkeley.

Ng, A., Harada, D., and Russell, S. (1999). Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the Sixteenth International
Conference on Machine Learning, pages 278–287.

Ng, A. and Jordan, M. (2000). Pegasus: A policy search method for large MDPs and
POMDPs. In Proceedings of the Sixteenth International Conference on Uncertainty in
Artificial Intelligence, pages 406–415.

Ng, A., Kim, H., Jordan, M., and Sastry, S. (2004). Autonomous helicopter flight via
reinforcement learning. In Proceedings of Advances in Neural Information Processing
Systems 16. MIT Press.

Oates, T. and Cohen, P. (1996). Searching for planning operators with context dependent
and probabilistic effects. In Proceedings of the Thirteenth National Conference on Arti-
ficial Intelligence, pages 863–868.

Ortiz, L. and Kearns, M. (2003). Nash propagation for loopy graphical games. In Proceed-
ings of Advances in Neural Information Processing Systems 15. MIT Press.

Owen, G. (1995). Game Theory. Academic Press.

152

Parr, R. (1998). Hierarchical Control and Learning for Markov Decision Processes. PhD
thesis, University of California at Berkeley.

Peshkin, L., Kim, K., Meuleau, M., and Kaelbling, L. (2000). Learning to cooperate via
policy search. In Proceedings of the Sixteenth International Conference on Uncertainty
in Artificial Intelligence, pages 489–496.

Pickett, M. and Barto, A. (2002). Policyblocks: An algorithm for creating useful macro-
actions in reinforcement learning. In Proceedings of the Nineteenth International Con-
ference on Machine Learning, pages 506–513.

Precup, D. (2000). Temporal Abstraction in Reinforcement Learning. PhD thesis, Univer-
sity of Massachusetts Amherst.

Puterman, M. (1994). Markov Decision Processes. Wiley Interscience.

Pynadath, D. and Tambe, M. (2002). The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence Re-
search, 16:389–426.

Rohanimanesh, K. and Mahadevan, S. (2003). Learning to take concurrent actions. In
Proceedings of Advances in Neural Information Processing Systems 15. MIT Press.

Rummery, G. and Niranjan, M. (1994). On-line Q-learning using Connectionist Systems.
Technical Report CUED/F-INFENG/TR 166, Engineering Department, Cambridge Uni-
versity.

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelligence,
5(2):115–135.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3:210–229.

Saria, S. and Mahadevan, S. (2004). Probabilistic plan recognition in multiagent systems.
In Proceedings of the Fourteenth International Conference on Automated Planning and
Scheduling, pages 12–22.

Schneider, J., Wong, W., Moore, A., and Riedmiller, M. (1999). Distributed value func-
tions. In Proceedings of the Sixteenth International Conference on Machine Learning,
pages 371–378.

Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted re-
wards. In Proceedings of the Tenth International Conference on Machine Learning,
pages 298–305.

Seri, S. and Tadepalli, P. (2002). Model-based hierarchical average-reward reinforcement
learning. In Proceedings of the Nineteenth International Conference on Machine Learn-
ing, pages 562–569.

153

Simon, H. A. (1981). The Sciences of the Artificial. MIT Press. second edition.

Simsek, O. and Barto, A. (2004). Using relative novelty to identify useful temporal ab-
stractions in reinforcement learning. In Proceedings of the Twenty-First International
Conference on Machine Learning, pages 751–758.

Singh, S. (1992). Transfer of learning by composing solutions of elemental sequential
tasks. Machine Learning, 8:323–339.

Singh, S. and Bertsekas, D. (1996). Reinforcement learning for dynamic channel alloca-
tion in cellular telephone systems. In Proceedings of Advances in Neural Information
Processing Systems 9, pages 974–980.

Singh, S., Jaakkola, T., Littman, M., and Szepesvari, C. (2000a). Convergence results for
single-step on-policy reinforcement learning algorithms. Machine Learning, 38(3):287–
308.

Singh, S., Kearns, M., and Mansour, Y. (2000b). Nash convergence of gradient dynamics
in general-sum games. In Proceedings of the Sixteenth International Conference on
Uncertainty in Artificial Intelligence, pages 541–548.

Stone, P. and Veloso, M. (1999). Team-partitioned, opaque-transition reinforcement learn-
ing. In Proceedings of the Third International Conference on Autonomous Agents, pages
206–212.

Sugawara, T. and Lesser, V. (1998). Learning to improve coordinated actions in cooperative
distributed problem-solving environments. Machine Learning, 33:129–154.

Sutton, R. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3:9–44.

Sutton, R. (1991). Dyna, an integrated architecture for learning, planning, and reacting.
SIGART Bulletin, 2:160–163.

Sutton, R. and Barto, A. (1998). An Introduction to Reinforcement Learning. MIT Press.

Sutton, R., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–
211.

Tadepalli, P. and Ok, D. (1996). Auto-exploratory average reward reinforcement learning.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages
881–887.

Tadepalli, P. and Ok, D. (1998). Model-based average reward reinforcement learning.
Artificial Intelligence, 100:177–224.

Tan, M. (1993). Multiagent reinforcement learning: Independent vs. cooperative agents.
In Proceedings of the Tenth International Conference on Machine Learning, pages 330–
337.

154

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation, 6:215–219.

Thrun, S. and Schwartz, A. (1995). Finding structure in reinforcement learning. In Pro-
ceedings of Advances in Neural Information Processing Systems 8, pages 385–392.

Van-Roy, B. (1998). Learning and Value Function Approximation in Complex Decision
Processes. PhD thesis, Massachusetts Institute of Technology.

Vickrey, D. and Koller, D. (2002). Multiagent algorithms for solving graphical games.
In Proceedings of the Eighteenth National Conference on Artificial Intelligence, pages
345–351.

Wang, G. and Mahadevan, S. (1999). Hierarchical optimization of policy-coupled semi-
Markov decision processes. In Proceedings of the Sixteenth International Conference on
Machine Learning, pages 464–473.

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, Kings College, Cam-
bridge, England.

Weiss, G. (1999). Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. MIT Press.

Williams, J. and Singh, S. (1999). Experiments with an algorithm which learns stochastic
memoryless policies for POMDPs. In Proceedings of Advances in Neural Information
Processing Systems 11, pages 1073–1079.

Williams, R. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256.

Xuan, P. and Lesser, V. (2002). Multiagent policies: from centralized ones to decentralized
ones. In Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1098–1105.

Xuan, P., Lesser, V., and Zilberstein, S. (2001). Communication decisions in multiagent co-
operation: Model and experiments. In Proceedings of the Fifth International Conference
on Autonomous Agents, pages 616–623.

Zhang, W. and Dietterich, T. (1995). A reinforcement learning approach to job-shop
scheduling. In Proceedings of the Fourteenth International Joint Conference on Arti-
ficial Intelligence, pages 1114–1120.

155

