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A simplified model of the cerebellum was developed to explore its poten-
tial for adaptive, predictive control based on delayed feedback informa-
tion. An abstract representation of a single Purkinje cell with multistable
properties was interfaced, using a formalized premotor network, with a
simulated single degree-of-freedom limb. The limb actuator was a non-
linear spring-mass system based on the nonlinear velocity dependence
of the stretch reflex. By including realistic mossy fiber signals, as well as
realistic conduction delays in afferent and efferent pathways, the model
allowed the investigation of timing and predictive processes relevant to
cerebellar involvement in the control of movement. The model regulates
movement by learning to react in an anticipatory fashion to sensory feed-
back. Learning depends on training information generated from correc-
tive movements and uses a temporally asymmetric form of plasticity for
the parallel fiber synapses on Purkinje cells.

1 Introduction

The neural commands that control rapid limb movements appear to com-
prise pulse components followed by smaller-step components (Ghez, 1979;
Ghez & Martin, 1982), analogous to the pulse-step commands that control
rapid eye movements (Robinson, 1975). In the case of eye movements, the
pulse component serves to overcome the internal viscosity of the muscles,
thus moving the eye rapidly to the target, whereupon the step component
holds the eye at its final position. Limb movements involve more inertia
than eye movements, so the pulse activation of the agonist muscle must
end partway through the movement, and a braking pulse in the antagonist
muscle is needed to decelerate the mass of the limb. Ghez and Martin (1982)
showed that the braking pulse is produced by a stretch reflex in the an-
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tagonist muscle. The central control problem, therefore, is to terminate the
pulse phase of the command sent to the agonist muscle at an appropriate
time during the movement. The dynamics of the stretch reflex should then
bring the movement to a halt at a desired end point. Since the pulse must
terminate well in advance of the achievement of the desired end point, this
is a problem of timing and prediction in control. In this article, we present
a model of how the cerebellum may contribute to the predictive control of
limb movements.

The model is a simplified version of the adjustable pattern generator
(APG) model being developed by Houk and colleagues (Berthier, Singh,
Barto, & Houk, 1993; Houk, Singh, Fisher, & Barto, 1990; Sinkjær, Wu, Barto,
& Houk, 1990) to test the computational competence of a conceptual frame-
work for understanding the brain mechanisms of motor control (Houk,
1989; Houk & Barto, 1992; Houk, Keifer, & Barto, 1993; Houk & Wise, 1995;
Houk, Buckingham, & Barto, 1996). The model has a modular architecture in
which single modules generate elemental motor commands with adjustable
time courses, and multiple modules cooperatively produce more complex
commands. The APG model is constrained by the modular anatomy of the
cerebellar cortex and its connections with the limb premotor network, by
the physiology of the neurons comprising this network, and by properties of
cerebellar Purkinje cells (PCs). However, it is purposefully abstract to allow
us to explore control and learning issues in a computationally feasible man-
ner. The model presented here corresponds to a single module of the APG
model consisting of a single unit representing a PC. This unit is modeled as
a collection of nonlinear switching elements, which we call dendritic zones,
representing segments of a PC dendritic tree.

Our previous modeling studies dealt mainly with two issues: (1) demon-
stration that a single module can learn to generate appropriate
one-dimensional, variable-duration velocity commands (Houk et al., 1990)
and (2) a preliminary demonstration that an array of 48 modules can learn to
function cooperatively in the control of a simulated nondynamic, two-joint
planar limb (Berthier et al., 1993). In these previous simulations, the input
layer of the cerebellum, the representation of PCs, and the complexity of the
learning problem were greatly simplified. In this article, we employ a more
realistic input representation based on what is known about movement-
related mossy fiber (MF) signals in the intermediate cerebellum of the mon-
key (Van Kan, Gibson, & Houk, 1993a) and the Marr-Albus architecture of
the granular layer (Tyrrell & Willshaw, 1992). In addition, we use a more
complex dynamic spring-mass system (although it is still one-dimensional),
and we include realistic conduction delays in the relevant signal pathways.
The model also makes use of a trace mechanism in its learning rule. Pre-
liminary results appear in Buckingham, Barto, and Houk (1995) and Barto,
Buckingham, and Houk (1996).

We first describe the nonlinear spring-mass system and discuss some of
its properties from a control point of view. The following section presents
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the details of the model. We then present simulation results demonstrating
the learning and control abilities of a single dendritic zone, followed by
similar results for a model with multiple dendritic zones. We conclude with
a discussion of these results.

2 Pulse-Step Control of a Nonlinear Plant

The limb motor plant has prominent nonlinearities that have a strong influ-
ence on movement and its control. The plant model used in this study is a
spring-mass system with a form of nonlinear damping based on studies of
human wrist movement (Gielen & Houk, 1984; Wu, Houk, Young, & Miller,
1990):

Mẍ+ B(ẋ)
1
5 + K(x− xeq) = 0, (2.1)

where x is the position (in meters) of an object of mass M (kg) attached
to the spring, xeq is the resting, or equilibrium, position, B is the damping
coefficient, and K is the spring stiffness (see Figure 1a). This fractional power
form of nonlinear damping is derived from a combination of nonlinear
muscle properties and spinal reflex mechanisms, the latter driven mainly
by feedback from muscle spindle receptors (Gielen & Houk, 1987). Setting
M = 1, B = 3, and K = 30 produces trajectories that are qualitatively similar
to those observed in human wrist movement (Wu et al., 1990).

Nonlinear damping of this kind enables fast movements that terminate
with little oscillation. Figure 1b is a graph of the damping force as a func-
tion of velocity. As velocity decreases, the effective damping coefficient
(the curve’s slope) increases radically when the velocity gets sufficiently
close to zero. This causes a decelerating mass generally to “stick” at a non-
equilibrium position, thereafter drifting extremely slowly toward xeq. We
call the position at which the mass sticks (defined here as the position at
which the absolute value of its velocity falls and remains below 0.9 cm/sec)
the end point of a movement, denoted xe. For all practical purposes, this is
where the movement stops.

The control signal in our model sets the equilibrium value xeq, which
represents a central motor command setting the threshold of the stretch re-
flex (Feldman, 1966; Houk & Rymer, 1981). Pulse-step control is effective
in producing rapid and well-controlled positioning of the mass in this sys-
tem. As shown in Figure 1c, the control signal switches from a pulse level,
xeq = xp, to a smaller step level, xeq = xs. Also shown are the time courses of
the velocity (see Figure 1c, middle) and position (see Figure 1c, bottom) for
the resulting movement. Inserting a low-pass filter in the command path-
way, a common feature of muscle models, would produce velocity profiles
more closely matching those of actual movements, but we have not been
concerned with this issue.
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Figure 1: Pulse-step control of a simplified motor plant. (a) Spring-mass system.
M, mass; x, position; xeq, resting, or equilibrium, position. (b) Nonlinear damping
force as a function of velocity. The plant’s effective damping coefficient (the
graph’s slope) increases rapidly as the velocity magnitude decreases to zero.
(c) Pulse-step control. Control of a movement from initial position x0 = 0 to
target end point xT = 5 cm. Top: The pulse-step command. Middle: Velocity
as a function of time. Bottom: Position as a function of time. (d) Phase-plane
trajectory. The bold line is the phase-plane trajectory of the movement of panel c.
The dashed line is a plot of the states of the spring-mass system at which the
command should switch from pulse to step so that the mass will stick at the end
point xT = 5 cm starting from a variety of different initial states.

Figure 1d shows the phase-plane trajectory (velocity plotted against po-
sition) followed by the state of the spring-mass system during pulse-step
control. When the pulse is being applied, the state follows a trajectory that
would end at the equilibrium position xp = 10 cm if the pulse were to con-
tinue. When the step begins, the state switches to the trajectory that ends
at the equilibrium position xs = 4 cm, but the mass sticks at the target end
point, xT = 5 cm, before reaching this equilibrium position. Thus, simply
setting the equilibrium position to the target end point as suggested by the
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equilibrium-point hypothesis (Bizzi, Hogan, Mussa-Ivaldi, & Gister, 1992;
Feldman, 1966, 1974) is not a practical solution to the end point positioning
task for this system. The dashed line in Figure 1d is an approximate plot
of the states at which the switch from pulse to step should occur so that
movements starting from a variety of initial states will stick at xT = 5 cm.
This switching curve has to vary as a function of the target end point. If the
switch from pulse to step occurs too soon (late), the mass will undershoot
(overshoot) xT.

In developing a model of pulse-step control of the limb, one can profit
from analogies, where appropriate, with the extensive literature on pulse-
step control of saccadic eye movements. However, an important difference
between eye and limb control is the absence of a stretch reflex for regulating
primate eye muscle activity (Keller & Robinson, 1971). As a consequence,
models of the eye motor plant do not contain the nonlinear damping mech-
anism present in equation 2.1. The stretch reflex is important in generating a
braking pulse in the antagonist muscles needed to decelerate the limb (Ghez
& Martin, 1982). In fact, the stretch reflex is the predominant mechanism
responsible for the entire decelerating portion of the trajectory in Figure 1D.
The stretch reflex is also the main mechanism causing the limb to stick at
a nonequilibrium position, as witnessed by the drift in limb position that
occurs in deafferented patients who lack a stretch reflex (Ghez, Gordon,
Ghilardi, Christakos, & Cooper, 1990). For eye movements, the prevention
of postsaccadic drift is critically dependent on the precise regulation of the
step component of the pulse-step command (Optican & Robinson, 1980).
Although it is likely that the step component is also regulated for limb
movements, relatively little is known about this mechanism. For the pur-
poses of this article, we assume the presence of a fixed step component and
rely on nonlinear damping for causing the limb to stick at an end point.

3 Model Architecture

Both limb and saccadic control systems are highly distributed, involving the
cerebral cortex, basal ganglia, cerebellum, tectum, brain stem, and spinal
cord. The focus here is on the special role of the cerebellum, which exerts its
influence on movement by way of premotor networks. For both limb move-
ments and saccades, there are two levels of premotor network. The upper
level is the cortico-rubro-cerebellar network for the limb (Houk et al., 1993)
and the tecto-reticulo-cerebellar network for saccades (Houk, Galiana, &
Guitton, 1992; Arai, Keller, & Edelman, 1994). These upper-level networks
feed control signals to a lower level comprising a propriospinal network
for the limb (Alstermark, Lundberg, Pinter, & Sadaki, 1987a) and a brain
stem burst network for saccades (Robinson, 1975). Since the emphasis in
this article is on the cerebellar cortex, the premotor networks will be given
only a formal representation. We assume that the propriospinal network,
in analogy with the brain stem burst network, can generate only relatively
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Figure 2: Model architecture. (a) Block diagram. PC, Purkinje cell; MFs, mossy
fibers; PFs, parallel fibers; CF, climbing fiber; τi, i = 1, . . . , 5, conduction delays.
The labels A and B mark places in the feedback loop to which we refer in dis-
cussing the model’s behavior. (b) Dendritic zone hysteresis. DZ activation, y,
switches from 0 to 1 when the input weighted sum, s, exceeds threshold Thigh,
and switches from 1 to 0 when s drops below Tlow.

crude commands that typically produce dysmetric movements when it op-
erates on its own. However, the system is capable of orthometric control
when the cerebellum and upper premotor networks are operative. In or-
der to focus on the critical control functions of PCs in the cerebellar cortex,
we will represent the cortico-rubro-cerebellar network as simply an invert-
ing mechanism that converts the inhibitory output of PCs into a positive
command signal. For simplicity, we further assume that the output of this
cortico-rubro-cerebellar network acts directly on spinal output rather than
functioning through the propriospinal network.

The model’s main component is a single unit representing a cerebellar
PC, whose input is derived from a sparse, expansive encoding of MF sig-
nals (see Figure 2a). In defining how the MFs encode information about the
spring-mass system, we followed what is known about movement-related
MF signals in the intermediate cerebellum of the monkey, where MFs exhibit
discharge patterns involving diverse combinations of tonic and phasic com-
ponents, as well as a variety of onset times relative to the time of movement
onset (Van Kan et al., 1993a).

To represent this diversity, the model has a total of 2000 MFs, 800 of
which encode information about single variables x, ẋ, xeq, or xT (200 MFs
devoted to each), with the remaining 1200 MFs encoding information about
pair-wise combinations of these variables. Each of the MFs representing a
single variable uses a saturated ramp encoding. For example, as the mass’s
position increases, the firing rate of a pure position-related MF remains zero
until a threshold is exceeded and then increases linearly until saturating at
a maximum firing rate. The thresholds are distributed uniformly over the
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relevant variable ranges, and several slopes and saturation levels are used.1

In addition, the signal conveyed by each pure position and velocity MF is
delayed relative to spring-mass movement by an amount chosen uniformly
at random from between 15 and 100 ms (τ1 in Figure 2a). The delay ranges
for this and the following types of MFs are within those observed for the
intermediate cerebellum of the monkey (Van Kan et al., 1993a). The signals
of the efference copy MFs (representing xeq) are delayed between 40 and 150
ms (uniform random) relative to the motor command (τ4 in Figure 2a). The
signal of each target position MF (representing xT) is delayed between 0 and
100 ms (uniform random) from the start of a trial (τ5 in Figure 2a). The signal
conveyed by each of the 1200 MFs representing pair-wise combinations of
the single variables is a weighted sum of the signals of two single-variable
MFs: 400 are combinations of pure x and ẋ MFs, 400 are combinations of pure
x and xeq MFs, and 400 are combinations of pure xT and ẋ MFs. Within these
classes, the pairs of MFs were chosen uniformly at random, and the weights,
which are positive and sum to one for each MF, were selected uniformly at
random. The relative number of MFs in these various classes is consistent
with the proportions observed by Van Kan et al., (1993a). The total number
of MFs was chosen for computational reasons: we wanted to ensure that
the model could accurately represent the transformation required by the
control task. We did not rule out the possibility that fewer MFs might also
suffice.

We set the efferent delay from the PC to the spring-mass system via pre-
motor circuits to 100 ms (τ2 in Figure 2a), which is within the range observed
for this pathway in the intermediate cerebellum of the monkey (Van Kan,
Houk, & Gibson, 1993b), although we experimented with other values as
well (see section 5.1). With this delay, the MF delay ranges described imply
that the onset of movement-related discharge of the MFs that use efference
copy information can lead movement onset by as much as 60 ms or lag it
by as much as 50 ms. On the other hand, movement-related discharge of
MFs relying on only proprioceptive information always lags movement by
between 15 and 100 ms.

Patterns of MF activity are recoded to form sparse activity patterns over
40, 000 binary parallel fibers (PFs), which synapse on the PC. This form of PF
state encoding is similar to that used in numerous models of the cerebellum,
such as those of Marr (1969) and Albus (1971). We selected this number of
PFs to ensure that the model could realize the required transformation. With

1 Thresholds are distributed at uniform intervals over the ranges of the relevant vari-
ables ([−0.5, 7.5] cm for x; [−25, 25] cm/sec for ẋ; [0, 1] for xeq; and [3, 7] cm for xT). The
slopes were set so that the ramp covers 50%, 25%, or 12.5% of the variable’s range. Half of
the slopes are negative, so that the MF decreases in activity as its coded variable increases.
Saturation levels differ slightly as a function of threshold, with higher thresholds being
associated with higher saturation levels. This roughly normalizes the average activity
level of the MFs.
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as few as 30,000 PFs, learning progresses at a slower rate and asymptotes
at a higher average end point error. However, with 60,000 PFs, an improve-
ment in learning performance is not observed. Each PF is the output of a
granule unit that sums excitatory input from four randomly chosen MFs.
We assumed that local competition takes place among granule units, allow-
ing only 80 of the units to fire (output = 1) at the same time. Marr (1969)
and Albus (1971) hypothesized that this competition arises from inhibitory
interactions through Golgi cells. We implemented this competition by di-
viding the granule cell population into 80 Golgi-cell receptive fields, each
comprising 500 granule units, and allowing only the most active unit in each
field to fire at any time step of the simulation (although the model does not
explicitly contain units representing Golgi cells). Thus, at each time step, the
PF input to the PC is a pattern of 40,000 binary values containing 80 ones.

The PC in the model consists of a number of dendritic zones (DZs) rep-
resenting segments of the dendritic tree. Our representation of DZs is moti-
vated by observations of plateau potentials in PC dendrites (Llinás & Sug-
imori, 1980; Ekerot & Oscarsson, 1981; Campbell, Ekerot, Hesslow, & Os-
carsson, 1983; Andersson, Campbell, Ederot, Hesslow, & Oscarsson, 1984).
These long-lasting potentials (up to several hundred ms in duration) rep-
resent a form of bistability, which results from hysteresis produced by the
dendritic ion channel system. A number of researchers have suggested that
dendritic or neuronal bistability resulting from hysteresis can be computa-
tionally useful (Hoffman, 1986; Benson, Bree, Kinahan, & Hoffman, 1987;
Kiehn, 1991; Houk et al., 1990; Wang & Ross, 1990; Gutman, 1991, 1994), and
Yuen, Hockberger, and Houk (1995) showed how these properties can arise
in a biophysical model of the PC dendrite.

Each DZ in the model is a linear threshold unit with hysteresis. Let s(t) =∑
i wi(t)φi(t), where φi(t) denotes the activity of PF i at time t and wi(t) is

the efficacy, or weight, at time step t of the synapse by which PF i influences
the PC dendritic segment comprising the DZ. The activity of the DZ at time
t, denoted y(t), is either 1 or 0, respectively, representing a state of high or
low activity. DZ activity depends on two thresholds: Tlow and Thigh, where
Tlow < Thigh. The activity state switches from 0 to 1 when s(t) > Thigh, and
it switches from 1 to 0 when s(t) < Tlow (see Figure 2b). If Thigh = Tlow,
the DZ is the usual linear threshold unit. Unlike plateau potentials, which
tend to reset spontaneously after a few hundred milliseconds (Llinás &
Sugimori, 1980; Campbell et al., 1983; Andersson et al., 1984), the state of
a DZ remains constant until actively switched by input. We have not yet
explored the consequences of spontaneous resetting in our model. In the
simulations reported below, we investigated the effects of several settings
of Thigh and Tlow.

The PC’s overall activity level at any time is equal to the fraction, f ,
of its DZs that are in state 1 at that time. In a more detailed model, the
PC would inhibit nuclear cells, thereby regulating the buildup of activity
in cortico-rubro-cerebellar loops from which motor commands are derived
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(Houk et al., 1993). The simpler model described here does not include an
explicit representation of these premotor circuits. The motor command, xeq,
is simply defined to be 4 f + 10(1 − f ), which means that when the PC is
maximally active ( f = 1), the equilibrium position is the “near” position of
4 cm, and when it is minimally active ( f = 0), the equilibrium position is
the “far” position of 10 cm. These values determine the range of target end
points for which the model is able learn accurate positioning commands, but
the model is not otherwise sensitive to the specific values. This definition
of the motor command reflects the inhibitory effect the PC would have on
cortico-rubro-cerebellar loops. As a result, pauses in the PC’s activity would
disinhibit activity of premotor circuits, which activate an agonist muscle for
rightward movement.

We studied three versions of the model that differ in the number of DZs
and how the PF input is distributed among them. In the simplest version,
a single DZ receives input from all 40,000 PFs. In the other versions, the
PC consists of 8 DZs. In one of these, each DZ receives input from all of
the PFs; in the other, each DZ receives input from a separate subfield of
5000 PFs. The latter version of the model, which is more realistic due to
the orthogonal relationship between PFs and the flattened dendritic trees
of PCs in the cerebellum, learned somewhat slower than the other 8-DZ
model, but its behavior was similar in other respects (see sec. 5.2).

4 Learning

All the DZs comprising the PC in the model receive training information
from a signal representing discharge of a climbing fiber (CF). This signal
provides information about the spring-mass system with a delay of 20 ms
(τ3 in Figure 2a), which is within the physiological range for CF signals
in cats (Gellman, Gibson, & Houk, 1983). The nature of the training infor-
mation supplied by the model’s CF is an extrapolation of what is known
about the responsiveness of proprioceptive CFs, which respond to particu-
lar directions of limb movement and appear to signal “unexpected” passive
movements, being suppressed during active (hence expected) movements
(Gellman, Gibson, & Houk, 1985). We hypothesize that by monitoring the
proprioceptive consequences of corrective movements generated by other
structures, modules of the cerebellum can learn to regulate motor com-
mands so that they produce more efficient and accurate movement. We
follow Berthier et al. (1993) in assuming that the propriospinal premotor
network generates simple corrective movements when a movement is inac-
curate. These corrective movements do not have to be particularly accurate
themselves; they only need to reduce the end point error. The literature on
which these assumptions are based is reviewed in some detail in an ear-
lier work (Berthier et al., 1993; see section 6). Although a sequence of such
corrective movements alone can produce small final end point error, the
sequence would be slow and dynamically erratic. The role of the cerebel-
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lum, we hypothesize, is to eliminate the need for corrective movements by
learning to suitably regulate the initial movement.

In the model, whenever the mass is coming to rest at a point not near
the target end point, an extracerebellar motor command in the form of
a single rectangular pulse is generated, causing movement in the correct
direction.2 In response to each rightward corrective movement, the model’s
directionally-sensitive CF produces a single discharge. The CF is silent dur-
ing leftward corrective movements (although the CF to a module activating
a muscle for leftward movement, if one were present in the model, would
discharge in this case). This follows a key assumption that the responsive-
ness of a PC’s CF to movement in a given direction is matched to the degree
to which that PC’s module is capable of contributing to movement in that di-
rection (see Berthier et al., 1993, for additional details). We also assume a low
background firing rate for the CF in the absence of corrective movements.
Letting c(t) denote CF activity at time step t, the model implements these
assumptions by setting c(t) = 1 at the initiation of each rightward corrective
movement, c(t) = 0 for the remainder of the rightward movement, c(t) = 0
during leftward corrective movements, and otherwise c(t) = β = 0.025,
which represents a low background firing rate.3

As a result of a corrective movement, the weights of each DZ should
change so that the PC contributes to a more accurate motor command. In
response to a rightward corrective movement, the weights should change
so as to increase the duration of the pulse phase of the command (since
the movement stopped short of the target end point), and in response to a
leftward corrective movement, the weights should change so as to decrease
the duration of the pulse phase of the command (since the movement over-
shot the target end point). Accomplishing this with a simple learning rule
is difficult because the training information in the form of CF activity is
significantly delayed with respect to the relevant DZ activity due to the
combined effects of movement duration and conduction latencies. To learn
under these conditions, the model adopts Klopf’s (1972, 1982) hypothesis
of synaptic “eligibility traces.” Appropriate activity at a synapse is hypoth-
esized to set up a synaptically local memory trace that makes the synapse
“eligible” for modification if and when the appropriate training information
arrives within a short time period. This allows the learning rule to modify
synaptic weights based on synaptic actions that occurred prior to the avail-

2 Whenever the mass has been “stuck” for 150 ms more than 0.1 cm from the target end
point, the motor command, xeq, is set to a value that causes movement toward the target.
Specifically, xeq = xT + a for undershoot and xeq = xT − a for overshoot, where a > 0 was
chosen to be sufficiently large to overcome the high low-velocity viscosity. Here, we used
a = 5 cm.

3 We experimented with a more realistic representation of background activity in which
c(t) = 1 with probability β for each background time step t. The results were essentially
the same, except that the learning process required about 2.5 times as many trials.



A Cerebellar Model of Timing and Prediction 575

ability of the relevant CF training information. An example eligibility trace
for one PF-to-PC synapse is shown in the bottom plot of Figure 3a. This eli-
gibility trace spans the interval from the time of the presynaptic PF’s activity
until later CF discharges occur (plot CF in the figure), when this synapse’s
weight is modified.

To define the learning rule, we have to specify how synapses become
eligible for modification and how CF activity alters the synaptic weights
based on the eligibility of synapses. We first describe the eligibility process.
The idea is that a synapse becomes eligible for modification if its presynaptic
PF was active in the recent past at the same time that the synapse’s DZ was in
state 1. Eligibility then persists as a graded quantity—a trace—that reflects
both how frequently and how long in the past this eligibility-triggering
condition was satisfied for that synapse. Although learning is not sensitive
to the exact time course of eligibility traces, a synapse should reach peak
eligibility at roughly the time at which a relevant CF discharge would reach
the PC. By a relevant CF discharge, we mean one produced by a correction
to a movement that was influenced by the eligibility-triggering activity at
the given synapse.

One of the simplest methods for computing eligibility is to simulate a
second-order linear filter whose input is 1 whenever the triggering condi-
tion is satisfied and 0 otherwise. The filter’s parameters were set so that its
impulse response rises to a peak about 255 ms after the triggering event, and
then decays asymptotically to zero with a time constant of approximately
600 ms. A synapse is therefore maximally eligible 255 ms after the triggering
event and becomes effectively ineligible approximately 2 sec later, assum-
ing no additional triggering events occur (see the bottom plot of Figure 3a).
This time course is appropriate for the movement durations and conduc-
tion delays in this model. An intracellular signal transduction mechanism
for producing this kind of eligibility trace was proposed in Kettner et al.
(1997). We also found it useful to limit the magnitude of eligibility so that
prolonged periods during which the triggering condition is satisfied do not
lead to excessively high eligibility, and hence to large weight changes. In
the discussion, we comment on the biological realism of the eligibility idea.

Letting ei(t) denote the eligibility of synapse i at time t, the model gen-
erates the eligibility trace for each synapse i by the following difference
equations involving the intermediate variables ēi and êi:

ēi(t) = .98ēi(t− 1)+ .02y(t)φi(t),

êi(t) = .98êi(t− 1)+ .02ēi(t− 1),

ei(t) = min{êi(t), 0.1},

where y(t) is the binary activity state of the synapse’s DZ at time step t,
and φi(t) is the activity of the presynaptic PF. Each time step in the model
represents 5 ms of real time.
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Figure 3: Single DZ behavior. The target end point, xT, was switched from 0
to 5 cm at time 0. Shown are the time courses of the DZ’s summed input, s;
activation state, f ; extracerebellar corrective command, EC; motor command,
xeq (after the 100 ms efferent delay τ2); and the position, x, and velocity, ẋ, of
the mass for a movement that started at initial position x0 = 0. Plot CF shows
climbing fiber activity, and the bottom plot shows the binary activity of an
arbitrarily selected PF together with the eligibility trace of its synapse onto the
DZ. (The eligibility trace’s amplitude is scaled up to make it easily visible; peak
eligibility here is 0.029.) Tlow = 0.8 and Thigh = 1. (a) Early in learning (four
trials). DZ state switched to 1 too soon, which caused the mass to undershoot
the target. A sequence of six rightward corrective movements was generated by
the extracerebellar system (EC) because all but the last failed to bring the mass
close enough to the target. Each corrective movement caused a CF discharge.
Each discharge of the selected PF contributed to the eligibility trace because the
DZ was in state 1 at these times. The weight of this PF’s synapse (not shown)
decreased when the CF discharge coincided with nonzero eligibility. (b) Late
in learning (1000 trials). The model consistently produced accurate reaching
with fast, smooth movements requiring no corrections (and hence with no CF
discharges). To accomplish this, the DZ learned to switch to 1 well before (about
300 ms) the end point was reached.

The remainder of the model’s learning mechanism is a rule determining
how the weights of eligible synapses are altered by CF activity. The logic of
this learning rule is a result of the following reasoning. When the weights
of a DZ’s eligible synapses decrease, that DZ becomes less likely to switch
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to state 1 in the future when a situation (represented by a pattern of PF
activity) is encountered that is similar to the one that was present when
the eligibility trace was initiated. This tends to prolong the pulse phase of
the motor command by delaying the DZ’s contribution to PC inhibition,
which increases movement duration and moves the initial movement’s end
point to the right. Thus, the weights of eligible synapses should decrease
as a result of each rightward corrective movement. Since the CF produces
a discharge on each rightward corrective movement, CF discharge should
cause depression of the eligible synapses. On the other hand, increasing the
weights of a DZ’s eligible synapses makes that DZ more likely to switch to
state 1 under similar circumstances in the future, which tends to shorten the
pulse phase of the motor command, thus decreasing movement duration
and moving the end point leftward. Therefore, leftward corrective move-
ments should cause potentiation of the eligible synapses. In the model, this
is accomplished by letting the CF signal drop below its background rate
during leftward corrective movements.

The following learning rule implements this logic:

1wi(t) = −αei(t)[c(t− τ3)− β],

wi(t) = max{wi(t− 1)+1wi(t), 0}, (4.1)

where α > 0 is a parameter influencing the rate of learning that was set
to 2 × 10−3 in the simulations described below.4 The term β implies that
weights do not change during background CF activity and that eligible
weights increase during leftward corrective movements when CF activity
drops below its background rate. Note that sinceβ ¿ 1, weight increases are
much smaller than weight decreases. The term c(t−τ3), where τ3 = 20 ms is
the CF conduction delay, is the CF signal that reaches the synapse at time t.
Since eligibility, ei(t), is a multiplicative factor, weights change in proportion
to their degree of eligibility. All the DZs comprising the model’s PC learn
independently according to this rule.

To summarize the model’s learning mechanism, training information is
supplied by CF responses to corrective movements. The CF for the single
module described here discharges reliably in response to rightward correc-
tive movements. This follows from the specificity of the CF system and the
assumption that this module controls an agonist for rightward movement.
Rightward corrective movements therefore raise the CF’s activity above its
background rate. For leftward corrective movements, the CF’s activity de-
creases slightly below its background rate. The weights of the synapses from
PFs to the DZs comprising the model’s PC change in response to CF activity
so that the duration of the pulse phase of the motor command is increased

4 This was chosen to be such a small value because the resultant change in PC activation
due to each learning step could be 80 times larger since 80 of the PF inputs are 1 at each
time step.
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in the case of rightward corrective movements and decreased in the case of
leftward corrective movements. The model uses eligibility traces to bridge
the time interval between the activity of the DZs and the relevant later
CF activity. A synapse becomes eligible for modification when presynaptic
activity coincides with the postsynaptic DZ being in state 1. Eligibility is
realized as a synaptically local trace that persists for several seconds after
the coincidence of pre- and postsynaptic activity. When CF activity rises
above its background level, the weights of the synapses are depressed in
proportion to their current degree of eligibility, which tends to lengthen the
pulse phase of the command. When CF activity falls below its background
level, synapses are facilitated in proportion to their eligibility, which tends
to shorten the pulse phase of the command.

5 Simulations

5.1 Single Dendritic Zone. We performed a number of simulations of a
single DZ learning to control the nonlinear spring-mass system. We trained
the DZ to move the mass from initial positions selected randomly from the
interval [0, 2 cm] to a target position randomly set to 3, 4, or 5 cm. DZ
state 0 corresponded to the pulse phase of a motor command, which set a
“far” equilibrium position of 10 cm; DZ state 1 corresponded to the step
phase, which set a “near” equilibrium position of 4 cm (see section 2). Each
simulation consisted of a series of trial movements. At the beginning of the
first trial movement, we randomly initialized all 40,000 weights so that the
weighted sum, s, fell uniformly between 0.68 and 1.48 for any initial pattern
of PF activity. Each trial began when the state of the DZ was set to 0. We
initialized each eligibility trace, ei(t), to 0 (ēi(t) and êi(t) were also set to 0).
We also set the pattern of MF activity to be consistent with the initial state
of the spring-mass system.

To study the influence of loop delay on learning and performance, we
conducted simulations in which the loop delay was varied by setting the
efferent delay (τ2 in Figure 2a) to 75, 100, or 125 ms. Figure 4a shows how the
end point error decreased with trials for the various efferent delays (with
Tlow = 0.8 and Thigh = 1). The DZ’s behavior is largely insensitive to this
range of delays. In each case, the average absolute error rapidly dropped
below 0.1 cm (see the dotted line in Figure 4a), the trigger criterion for the
extracerebellar corrective movement. In all the simulations reported below,
we set τ2 = 100 ms. However, the model’s behavior is sensitive to the
amount of DZ hysteresis. Figure 4B shows how end point error decreased
over trials for several different values of Tlow, with Thigh fixed at 1. Learning
was seriously disrupted when there was no hysteresis (Tlow = Thigh = 1).
In all simulations reported below, Tlow = 0.8 and Thigh = 1, unless noted
otherwise.

Figure 3 shows time courses of relevant variables at different stages in
learning to move to target end point xT = 5 cm from initial position x0 = 0.
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Figure 4: End point error (|xe − xT|) as a function of trial number for single DZ
learning. Each plotted point is an average over a bin of 50 trials of 10 learning
runs. The dotted horizontal line shows the minimum threshold above which
corrective movements were generated. (a) Effect of loop delay. Plots for efferent
delays (τ2) of 75, 100, and 125 ms. Here, Tlow = 0.8 and Thigh = 1. (b) Effect of
hysteresis. Plots for Thigh = 1 and Tlow = .8, .9, and 1 (no hysteresis). Efferent
delay (τ2) was 100 ms.

Early in learning (four trials, panel A), the DZ switched back to state 1
too soon (plot f ), which caused the mass to undershoot the target. Because
of this undershoot, the extracerebellar system (EC) generated a corrective
movement. In fact, a sequence of six corrective movements was generated
because all but the last failed to bring the mass close enough to the target.
Each corrective movement caused a CF discharge. The resulting movement
accurately reached the target, but along a slow and irregular trajectory.

Plotted at the bottom of Figure 3 is the binary activity of an arbitrarily
selected PF and the eligibility trace of its synapse onto the PC. Note that each
discharge of the PF contributed to the trace because the DZ was in state
1 at these times. The weight of this PF’s synapse (not shown) decreased
when the CF discharge coincided with nonzero eligibility. The decrease
of this weight, along with decreases of many others, tended to prolong
the pulse phase of the motor command by delaying the DZ’s switch to
state 1. None of the synaptic weights increased during this trial because
there was no leftward corrective movement (see Figure 7a for an example
of a trial with a leftward corrective movement). Later in learning (after
1000 trials, Figure 3b), the model consistently produced accurate reaching
with fast, smooth movements requiring no corrections (and hence causing
no CF discharges). To accomplish this, the DZ learned to switch to state 1
well before (about 300 ms) the end point was reached.

Figure 5a shows the paths of a number of movements controlled by
a well-trained DZ. The initial position of the mass for each movement is
indicated by the circle at the left end of each line, and the target end points
are indicated by the vertical dashed lines. The asterisk on each path marks
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Figure 5: (a) Paths of a number of movements controlled by a single well-trained
DZ. The path of each movement is shown by a horizontal line. The initial position
of the mass for each movement is indicated by the circle at the left end of each
line, and the target end points are indicated by the vertical dashed lines. The
asterisk on each path marks the position of the mass when the PC state switched
from 0 to 1. The actual end point of the movement is indicated by the × at the
right end of each line. The DZ switches state well before a movement ends. The
model used a motor efference delay of 100 ms. (b) Switching curves. Phase-plane
portraits of switching curves for target xT = 5 cm learned by the model. Two
switching curves and three example movement trajectories are shown. See the
text for an explanation.

the position of the mass when the DZ switched state from 0 to 1. The end
point of each movement is indicated by the × at the right end of each line.
One can see that the movements were accurate across a range of initial
positions and target end points. It is apparent that the DZ switched state
well before the end of each movement.

Figure 5b shows two representations (the dashed lines labeled A and B)
of the switching curve learned by the DZ for target xT = 5 cm, together with
three sample phase-plane trajectories. Switching curve A is the switching
curve as it appears after the efferent delay τ2, that is, as seen from the point
marked A in Figure 2a. When the spring-mass system’s state crosses this
curve, the command input to the spring switches from pulse to step. Clearly,
it is positioned correctly to cause the mass to stick close to the desired end
point for a range of initial conditions. Switching curve B, on the other hand,
is the switching curve as it appears before the efferent delay, that is, as seen
from the point marked B in Figure 2a. This curve is crossed 100 ms before
switching curve A is crossed due to the 100 ms efferent delay. When the
system state crosses this curve, the DZ switches state. One can see that the
DZ learned to switch 100 ms before the motor command must switch at
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the spring itself, appropriately compensating for the 100 ms latency of the
efferent pathway. To do this, the DZ effectively learned to “recognize” the
patterns of PF activity that were present at its synapses when the system state
crossed switching curve B. It is important to note that due to the various
delays in the MF pathways, the recognized PF patterns actually encoded
information about the spring-mass state as it was between 15 and 100 ms
earlier.

5.2 Multiple Dendritic Zones. We simulated two versions of the model
in which the PC consists of eight DZs. In each case, the PC’s activity level
at any time is the fraction of its DZs that are in state 1 at that time (see
section 3). In one version, each DZ receives input from all of the PFs (uniform
model); in the other, each DZ receives input from a separate subfield of
5000 PFs (subfield model). Figure 6 shows how the end point error decreased
with trials for these two variations, as well as for the single DZ model. The
uniform model learned significantly faster than the others and reached a
smaller final error. We believe this is due to the fact that the uniform model
has many more adjustable parameters than the others so that there are many
different potential solutions: the algorithm is constrained only to reduce the
end point error, which can be accomplished in many ways. To save computer
time, we restricted further simulations to the uniform model, but it is likely
that the subfield model would have produced similar results.

Figure 7 illustrates some details of the behavior of the uniform model.
Panel a is analogous to Figure 4a except that it shows a trial in which there
was a single leftward corrective movement instead of multiple rightward
corrective movements. Note that the leftward corrective movement did not
generate CF discharges but instead slightly depressed CF background rate.
Unlike the single DZ case, here the motor command was graded due to
the varying contributions of the eight DZs. This variety was due to the
differing initial weights of the DZs. Later in learning (1500 trials, panel b),
fast, accurate, and smooth movements were accomplished, although the
motor command was not a pure pulse.

We also investigated the effects of different levels of hysteresis on the uni-
form model by fixing Thigh to 1 and varying Tlow, as we did for the single DZ
system (Figure 4b). Unlike the single DZ case, hysteresis had no significant
effect on the learning rate of the uniform model. However, we did note that
without hysteresis (Tlow = 1; see Figure 8), the final motor command was
more irregular than it was with hysteresis. This was the result of multiple
switching by approximately half of the DZs.

6 Discussion

By including realistic conduction delays in afferent and efferent pathways,
the model described here allowed the investigation of timing and predictive
processes relevant to cerebellar involvement in the control of movement.
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Figure 6: End point error (|xe − xT|) as a function of trial number for multi-DZ
learning. In the uniform model, each DZ receives input from all of the PFs; in the
subfield model, each DZ receives input from a separate subfield of 5000 PFs. Also
shown is a plot for the single DZ model. The uniform model learned significantly
faster than the others and reached a smaller final error. Each plotted point is an
average over a bin of 50 trials of 10 learning runs. The dotted horizontal line
represents the minimum threshold above which corrective movements were
generated. Tlow = 0.8, Thigh = 1, and τ2 = 100 ms.

Moreover, the nonlinearity of the simple motor plant, which is based on
muscle mechanical and spinal reflex properties, makes the control problem
reflect properties of skeletomotor control better than would a simpler linear
plant. While making the control problem more difficult from a conventional
control perspective, the nonlinear damping has the advantage of allowing
fast movements to be made with little or no oscillation, effectively solving
the stability problem, at least for the one-degree-of-freedom positioning task
studied here.

Key to the model’s ability to perform accurate end point positioning is its
ability to learn predictive control. This is illustrated most clearly in the case
of a single DZ, for which clear switching curves could be derived and related
to plant dynamics (see Figure 5b). The model’s relative insensitivity to loop
delay is due to its predictive use of a rich array of afferent and efference-copy
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Figure 7: Multiple DZ behavior. This figure is analogous to Figure 3 but for
a PC consisting of eight DZs, each receiving input from all the PFs (uniform
model). The target end point, xT, was switched from 0 to 5 cm at time 0. Shown
are the time courses of the eight DZs’ summed inputs, s; the PC’s activation
state, f ; extracerebellar corrective command, EC; motor command, xeq (after
the 100 ms efferent delay τ2); and the position, x, and velocity, ẋ, of the mass
for a movement that started at initial position x0 = 0. The bottom plot shows
CF activity. Tlow = 0.8 and Thigh = 1. (a) Early in learning (250 trials). One of
the DZs switched back to 1 too late, which caused the mass to overshoot the
target slightly. The extracerebellar (EC) system generated a leftward corrective
movement, which decreased CF activity below its low background level. (b) Late
in learning (1500 trials). The model consistently produced accurate reaching with
fast, smooth movements requiring no corrections. Note that the command is still
basically a pulse-step, although it is no longer binary.

signals. The model does not explicitly predict the motor plant’s behavior;
that is, it does not use a forward model of the motor plant, a role suggested
for the cerebellum by several researchers (Ito, 1984; Keeler, 1990; Miall, Weir,
Wolpert, & Stein, 1993). In fact, the model makes no explicit predictions of
any kind, if this is taken to mean the creation of representations of future
events. Instead, it learns to generate motor commands in a manner that
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Figure 8: Multiple DZ behavior without hysteresis. This figure is analogous
to Figure 7 except that there was no hysteresis (Tlow = 1). (a) Early in learning
(175 trials). (b) Late in learning (1,000 trials). The motor command, xeq, was more
irregular than it was with hysteresis. This was the result of multiple switching
by approximately half of the DZs.

causes desired future behavior. The model is a kind of direct adaptive con-
troller (e.g., Goodwin & Sin, 1984), where the term direct refers to the lack
of a model of the controlled system.

Our model adopts the hypothesis of Marr (1969) and Albus (1971) that
the granular layer provides a sparse expansive encoding that increases the
ease with which a large number of associations can be formed (Buckingham
& Willshaw, 1992; Tyrrell & Willshaw, 1992). We combined this hypothesis
with a more realistic representation of movement-related MF signals (Van
Kan et al., 1993a). Although the model’s use of such a large number of PFs,
and hence adjustable parameters (the PF-to-PC synaptic weights), for such
a simple task is a defect from a purely engineering perspective, it is a result
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of our attempt to represent faithfully what is known about how information
is encoded in the MF signals, coupled with our use of a random selection of
MF inputs to granule units. Careful design of the latter connection pattern
would decrease the number of PFs required. However, simulations show
that the current model’s behavior degrades if the number of PFs is signif-
icantly decreased. We did not investigate the generalization capabilities of
the model, which would also be influenced by the input encoding and the
number of adjustable parameters.

Experimental data on the effects of CF discharge on PF-to-PC synapses
suggest an instructive role for CF signals, as adopted by the model. There
now seems to be good, though not universal, agreement that CF activity,
when coupled with other factors, produces long-term depression (LTD) of
the action of PF-to-PC synapses (e.g., Crepel et al., 1996), as postulated by
Albus (1971). Less is known about possible long-term potentiation (LTP) at
these synapses, which the model also uses, although LTP has been induced
in brain slices by stimulating PFs in the absence of CF activity (Sakurai,
1987), which is consistent with our model’s learning rule.

An essential feature of the model’s learning rule is its use of synaptically
local eligibility traces for learning with delayed training information. Eligi-
bility traces are key components of many reinforcement learning systems
(e.g., Sutton & Barto, 1998) as well as models of classical conditioning (Sut-
ton & Barto, 1981, 1990; Klopf, 1988), where they address the sensitivity of
conditioning to the time interval between the conditioned and the uncon-
ditioned stimuli and the anticipatory nature of the conditioned response.
Eligibility traces play the same role in this model, whose learning mecha-
nism is much like classical conditioning, with corrective movements playing
the role of unconditioned responses.5 Our model is therefore in accord with
the view that general principles of cerebellar-dependent learning may be
involved in adaptation of the vestibulo-ocular reflex, classical conditioning
of the eyelid response, as well as learning in saccadic eye movements and
limb movements (Houk et al., 1996; Raymond, Lisberger, & Mauk, 1996).
We hypothesize that for reaching, the role of the cerebellum is to eliminate
corrective movements by suitably tuning the initial movement.

Only a few studies of cerebellar plasticity have attempted to manipulate
the relative timing of the experimental variables used to elicit LTD. In sev-
eral studies, LTD occurred only if CF stimulation preceded PF stimulation
(Ekerot & Kano, 1989; Schreurs & Alkon, 1993). Recently, however, Chen and
Thompson (1995) demonstrated that delaying CF activation by 250 ms after
a PF volley facilitates the appearance of LTD, suggesting that there may be
a cellular mechanism that compensates for the time interval. Schreurs, Oh,

5 The present model lacks the ability to produce an analog of higher-order conditioning,
one of the key features of the classical conditioning models. We know of no studies of the
cerebellum’s involvement in higher-order classical conditioning.
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and Alkon (1996) showed that a form of LTD, which they call pairing-specific
LTD, results only when PF stimulation precedes CF stimulation. Although
these studies were motivated by the timing parameters required for classical
conditioning of the rabbit nictitating membrane response, their results are
relevant to other aspects of motor learning as well. Houk and Alford (1996)
presented a model suggesting how intracellular signal transduction mecha-
nisms that mediate LTD could give rise to an eligibility trace. Recent results
in which the timing of intracellular signals was controlled photolytically
appear to suggest that CF activity should precede PF activity in order to
produce LTD (Lev-Ram, Jiang, Wood, Lawrence, & Tsien, 1997). However,
this conclusion depends critically on the interpretation given to the various
intracellular signals. We hope that the computational importance of a trace
mechanism will stimulate additional cellular studies to explore this critical
issue.

The nature of the training information provided by climbing fibers is
incompletely understood. In oculomotor regions of the cerebellum, CFs are
sensitive to retinal slip and thus are well suited to detect errors in the stabi-
lization of visual input. By analogy, one presumes that the somatosensory
sensitivity of CFs in limb regions has an analogous error-detection function,
although this has been difficult to specify in detail (Fu, Mason, Flament,
Coltz, & Ebner, 1997; Houk et al., 1996; Kitazawa, Kimura, & Yin, 1998;
Simpson, Wylie, & de Zeeuw, 1996). In this model, we adopted our earlier
working hypothesis that CFs detect hypometria by responding to correc-
tive movements in the same direction as the primary movement (Berthier et
al., 1993). This was rationalized from the finding that CFs with directional
sensitivity to passive limb movements (units located in the rostral medial
accessory olive) are inhibited during self-generated movements (Gellman et
al., 1985) but fire when perturbations occur during or at the end of the move-
ment (Andersson & Armstrong, 1987; Horn, Van Kan, & Gibson, 1996). We
assume that corrective movements occur near the end of inaccurate move-
ments and that they function like perturbations to fire CFs in a directionally
selective manner.

Reaching movements are known to consist of a primary movement,
which is often succeeded by one or more secondary movements, the latter
being corrective in nature (Prablanc & Martin, 1992). Lesion studies have
demonstrated the involvement of several neural pathways in the generation
of both the primary movements and the corrections (Pettersson, Lundberg,
Alstermark, Isa, & Tantisira, 1997). Small corrections do not require vision
of the arm and are often made without subject awareness and at shorter la-
tencies than the primary movements (Goodale, Pélisson, & Prablanc, 1986).
These findings suggest the involvement of a simple, automatic mechanism
such as the propriospinal network (Alstermark, Eide, Górska, Lundberg,
& Pettersson, 1984; Alstermark, Górska, Pettersson, & Walkowska, 1987b).
Major corrections, such as reversals in direction, engage the corticospinal
system (Georgopoulos, Kalaska, Caminiti, & Massey, 1983). In this model,
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we assumed that all corrections following primary movements are made
by a simple, extracerebellar process presumed to be mediated by the pro-
priospinal system. This was meant to be a minimalistic assumption; the
model could have made use of training information derived from more ac-
curate corrective movements generated, for example, by the corticospinal
system. In fact, since training information is derived from the propriocep-
tive consequences of corrective movements, the model is capable of learning
from corrections generated by any system or combination of systems.

We also used the model to experiment with possible computational roles
for plateau potentials in PC dendrites (Llinás & Sugimori, 1980; Ekerot &
Oscarsson, 1981; Campbell et al., 1983; Andersson et al., 1984). Our repre-
sentation of DZs as linear threshold elements with hysteresis allows them
to produce abstract analogs of plateau potentials. Hysteresis is sometimes
used in two-action control systems to reduce “chattering” caused by re-
peated crossing of the switching curve. It has the same effect here in mak-
ing the DZs switch state less frequently, which makes the model’s motor
commands less erratic. Hysteresis greatly facilitated learning in the single-
DZ case, presumably because it prevented chattering in motor commands,
thereby making them closer to the pulse-step form and reducing the amount
of learning required. In the multiple-DZ case, hysteresis had little influence
on learning, perhaps because the motor commands were relatively smooth
without hysteresis since they resulted from the activity of multiple DZs. We
did, however, observe increased chatter in the pulse-step command when
hysteresis was removed (see Figure 8), suggesting that hysteresis could have
a role in facilitating the generation of well-formed motor commands. More
study is needed to explore possible computational roles of nonlinear prop-
erties of PC dendrites.

Several previous cerebellar models dealing with eye movement are closely
related to the model of limb control presented here. Like our model, the
model of adaptive control of saccades due to Schweighofer, Arbib, and
Dominey (1996a, b) follows Berthier et al. (1993) and Houk et al. (1990)
in making use of corrective movements as sources of training informa-
tion. Schweighofer et al. also use eligibility traces following the classical
conditioning models of Sutton and Barto (1981, 1990). Unlike the mono-
tonically decaying traces in these models, however, the eligibility traces of
Schweighofer et al. reach peaks sometime after being initiated. This is in
accord with Klopf’s (1972) original conception that peak eligibility occurs
at the optimal interstimulus interval for learning (see also Klopf, 1988). Our
model also adopts this type of eligibility trace. The key differences between
our model and that of Schweighofer et al. are due to differences in the dy-
namics of the motor plant and the degree of attention paid to system delays
and afferent encoding. Because we are concerned with limb movement, our
motor plant has significant inertia, which, together with nontrivial delays
in various conduction channels, requires significant anticipatory control
as illustrated by our simulations. The eye plant of the Schweighofer et al.
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model lacks significant dynamics (the plant is essentially inertia-less), and
it is not apparent that conduction delays are included. The ramp encodings
we use for most of the MF signals are also more faithful representations of
experimentally observed MF encodings.

Our model also shares features with the model of predictive smooth-
pursuit eye movements due to Kettner et al. (1997). Like ours, this model
includes MF inputs with diverse response properties and delays, a granular
layer that expansively recodes this input, and a similar learning rule using
eligibility traces generated by a second-order linear system. The PCs of that
model, however, are continuous elements as opposed to the multistable ones
used in our model (although as the number of DZs is increased, our model
more closely approximates a continuous system). Additionally, training in-
formation in the Kettner model is provided by CFs that detect failures of
image stabilization (retinal slip) instead of corrective eye movements.

A model of limb movement related to ours is the feedback-error learning
model of Kawato and Gomi (1992, 1993) in which the cerebellum learns
to act as an inverse dynamic model of the motor plant, being trained by
feedback generated from movement caused by an extracerebellar system.
This is similar to what we have done in the our model, with two excep-
tions. First, our training information is intermittent feedback from discrete
corrective movements instead of a continuous feedback signal. Second, un-
like feedback-error learning models, as well as the limb control model of
Schweighofer (1995), we do not assume that reference trajectories specify-
ing the complete kinematic details of the desired movement are supplied
to the cerebellum by another brain region. Therefore, we do not hypothe-
size that the cerebellum becomes an inverse dynamic model of the plant in
the sense of associating a reference trajectory to appropriate control signals.
Target signals in our model do not convey this kind of detailed information
about the desired trajectory. Instead, through learning, target signals be-
come associated with movements whose kinematic details are determined
by the properties of the motor plant. Our model therefore has elements in
common with the equilibrium-point hypothesis (Bizzi et al., 1992; Feldman,
1966, 1974) in that muscles and spinal reflexes play essential roles in trajec-
tory formation. Unlike that hypothesis, however, movement end points are
generally not equilibrium positions.

The model presented in this article has a number of limitations. It lacks
representations of many of the components of the full APG model on which
it is based. In that model, movement would be the result of the combined
effects of the elemental commands of a number of cerebellar APG modules
that operate simultaneously. Here, we described only a single module con-
sisting of a single PC and included no explicit representation of premotor
circuits. Because the model presented here consists of a single PC control-
ling a single agonist actuator, it does not illustrate critical features of the
full model. It does not show, for example, that during a movement, most
PCs would have to increase activity to inhibit muscle synergies that should
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not fully participate in the movement. In the model presented here, the sin-
gle PC always has to decrease activity to generate a motor command. Our
model also suggests that after learning, the extracerebellar source of correc-
tive movements no longer plays a role in limb movement. This is consistent
with the feedback-error learning model but at variance with models of sac-
cade generation in which cerebellar control augments, rather than replaces,
the control provided by the brain stem burst generator (Dean, 1995; Arai
et al., 1994; Optican, 1995). Our model does not adopt this approach be-
cause much less is known about the propriospinal network than is known
about the brain stem pulse generator. However, this would be worthwhile
to pursue in future research.

Finally, nothing in this article suggests how the model presented here
might extend to more complex control problems involving multi-degree-
of-freedom limbs. One of the objectives of the full APG model is to explore
how the collective behavior of multiple APG modules can accomplish pulse-
step control of a more complex motor plant without resorting to preplanned
reference trajectories. Our research is continuing in this direction (Fagg,
Sitkoff, Barto, & Houk, 1997a, b).
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