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Abstract

Unmotivated students do not reap the full rewards of
using a computer-based intelligent tutoring system. De-
tection of improper behavior is thus an important com-
ponent of an online student model. To meet this chal-
lenge, we present a dynamic mixture model based on
Item Response Theory. This model, which simultane-
ously estimates a student’s proficiency and changing
motivation level, was tested with data of high school
students using a geometry tutoring system. By account-
ing for student motivation, the dynamic mixture model
can more accurately estimate proficiency and the proba-
bility of a correct response. The model’s generality is an
added benefit, making it applicable to many intelligent
tutoring systems as well as other domains.

Introduction
An important aspect of any computer-based intelligent tu-
toring system (ITS) is the ability to determine a student’s
skill set and to tailor its pedagogical actions to address the
student’s deficiencies. Tutoring systems have demonstrated
this ability in the classroom (VanLehnet al. 2005). How-
ever, even the most effective tutoring system will fail if the
student is not receptive to the material being presented. Lack
of motivation has been shown empirically to correlate with
a decrease in learning rate (Baker, Corbett, & Koedinger
2004). While attempts to motivate a student by using mul-
timedia and/or by couching the material as a game have
proved partially successful, there is still significant room for
improvement. In fact, these motivation tools can themselves
cause undesirable behavior, where students uncover ways
to game the system. This issue of motivation and perfor-
mance is particularly relevant given the weight assigned to
high stakes achievement tests, such as the Scholastic Apti-
tude Test (SAT), as well as other exams that can be required
for graduation. Students use tutoring systems to practice
for high-stakes tests but typically are not graded based on
their performance, which leads to low effort. The concern
of low motivation affecting performance is also being ad-
dressed by the educational assessment community (Wise &
DeMars 2005).
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Automated diagnosis is the first step in addressing a
student’s level of motivation. Several models have been
proposed to infer a student’s engagement using variables
such as observed system use (time to respond, number of
hints requested), general computer use (opening an Inter-
net browser, mouse activity), and visual and auditory clues
(talking to the person at the nearby computer). The pur-
pose of this paper is not to point out new ways in which
students display unmotivated behavior, but rather to provide
a general, statistical framework for estimating both motiva-
tion and proficiency in a unified model provided that un-
motivated behavior can be identified. We propose combin-
ing an Item Response Theory (IRT) model to gauge student
proficiency and a hidden Markov model (HMM) to infer a
student’s motivation. The result is a very general, dynamic
mixture model whose parameters can be estimated from stu-
dent log data and can run online by an ITS. We validate the
model using data from a tutoring system, but indicate the
model can be applied to other types of data sets.

Background
The next two sections describe previous work in estimat-
ing motivation and provide a brief introduction to Item Re-
sponse Theory.

Relevant Literature

Several models have been proposed to infer student motiva-
tion from behavioral measures. de Vicente and Pain (2000;
2002) designed a study where participants were asked to
watch prerecorded screen interaction of students using their
tutoring system. Participants in the study created over eighty
inference rules linking motivation to variables that could be
observed on the screen. The fact that so many rules could be
derived purely from screen shots suggests that simple, inex-
pensive methods for estimating motivation should be useful
for a tutoring system.

Conati (2002) presented a dynamic decision network to
measure a student’s emotional state based on variables such
as heart rate, skin conductance, and eyebrow position (in
contrast to the more easily attained data used by de Vicente
and Pain). The structure and parameters of the model, in
the form of prior and conditional probabilities, were set by
hand and not estimated from data. The probabilistic model



applies decision theory to choose the optimal tutor action to
balance motivation and the student’s learning.

A latent response model (Baker, Corbett, & Koedinger
2004) was learned to classify student actions as either gam-
ing or not gaming the system. Furthermore, instances of
gaming the system were divided into two cases: gaming
with no impact on pretest-posttest gain and gaming with a
negative impact on pretest-posttest gain. The features used
in the latent response model were a student’s actions in the
tutor, such as response time, and probabilistic information
regarding a student’s latent skills.

Arroyo and Woolf (2005) developed a Bayesian network
using a student’s observed problem-solving behavior and
unobserved attitude toward the tutor. The unobserved vari-
ables were estimated from a survey that students filled out
after using the tutor. Correlation between pairs of variables
was used to determine the network’s connectivity.

Beck (2005) proposed a function relating response time to
the probability of a correct response to model student disen-
gagement in a reading tutor. He adapted the item characteris-
tic curve from IRT to include a student’s speed, proficiency,
response time, and other problem-specific parameters. The
learned model showed that disengagement negatively corre-
lated with performance gain.

These models embody different assumptions about the
variables required to estimate student motivation (e.g. static
versus dynamic models, complex versus simple features,
user specified versus learned model parameters, generic ver-
sus domain specific models). The model proposed in this
paper is different because it encompasses the following four
principles which do not all exist in any one of the previous
models. First, the model should estimate both student mo-
tivation and proficiency. These variables need to be jointly
estimated because poor performance could be due to either
low motivation or insufficient ability. Only one of the afore-
mentioned models performs this function (Beck 2005). Sec-
ond, the proposed model should run in real time. There ex-
ists a tradeoff between model complexity and expressiveness
to ensure tutoring systems can take action at the appropriate
time. Ideally, the model parameters should also be estimable
from a reasonable amount of data. Third, the model should
be flexible enough to easily include other forms of unmoti-
vated behavior as researchers identify them. Fourth, motiva-
tion needs to be treated as a dynamic variable in the model.
Empirical evidence suggests that a student’s motivation level
tends to go in spurts. For example, Table 1 shows actual per-
formance data (initial response time, total time to click the
correct answer, and number of incorrect guesses) of a sin-
gle student doing multiple-choice geometry problems. The
problems are not arranged according to difficulty; therefore,
the obvious shift in the student’s behavior after the seventh
problem could be attributed to a change in motivation.

Item Response Theory
IRT models were developed by psychometricians to examine
test behavior at the problem level (van der Linden & Ham-
bleton 1997). This granularity is in contrast to previous work
that examined behavior at the aggregate level of test scores.
While IRT models encompass a wide variety of test formats,

Initial Total Number
Problem Time (s) Time (s) Incorrect

1 40 40 0
2 44 44 0
3 13 13 0
4 19 19 0
5 7 9 4
6 22 22 0
7 35 35 0
8 2 3 2
9 2 2 0
10 3 4 1
11 2 4 4
12 2 3 3

Table 1: Data from a single student using the geometry tutor.
Notice the change in behavior after the first seven problems

we focus in this paper on IRT models for dichotomous user
responses (correct or incorrect).

Item Response Theory posits a static, generative model
that relates a student’s ability,θ, to his/her performance on
a given problem,Ui, via a nonlinear characteristic curve,
f(Ui|θ). IRT models are data-centric models (Mayo &
Mitrovic 2001) because they do not presuppose a decom-
position of problems into separate, required skills. Each
problem in an IRT model is assumed independent of the
other problems. The random variableθ is drawn from a nor-
mal distribution with a specified mean and variance. The
random variables associated with each problem,Ui, come
from a Bernoulli distribution with the probability of a cor-
rect response given by the following parameterized function
(Equation 1, Figure 1).

P (Ui = correct|θ) = ci +
1− ci

1 + exp(−ai(θ − bi))
(1)

This is referred to as the three-parameter logistic equa-
tion, whereai is the discrimination parameter that affects
the slope of the curve,bi is the difficulty parameter that
affects the location, andci is the pseudo-guessing param-
eter that affects the lower asymptote. Note that the two-
parameter logistic equation is a special case of the three-
parameter equation whereci is set to zero. Consistent
and efficient methods exist for estimating these parame-
ters. A more thorough description of the IRT model, it’s
properties, and the role of each of the parameters can be
found in any text on the subject (Baker & Kim 2004;
van der Linden & Hambleton 1997).

Model
We propose a dynamic mixture model based on Item Re-
sponse Theory (DMM-IRT). The probabilistic model con-
sists of four types of random variables: student proficiency,
motivation, evidence of motivation, and a student’s response
to a problem.

The latent variables in the student model correspond to
proficiency (θ) and motivation (Mi). Proficiency is defined
to be a static variable (note, if statistical estimates of profi-
ciency are made online while a student uses the tutor, then
each new data point causes the estimate to change, but the



Figure 1: Three-parameter logistic function relating profi-
ciency (θ) to the probability of a correct response. The three
curves illustrate the discrimination parameter’s effect while
fixing the other parameters atbi = 0.5 andci = 0.2

random variable is nonetheless assumed to be static). This
assumption is also made in IRT modeling. In this paper,
we assumeθ has a unidimensional normal distribution with
mean 0 and variance 1. Experiments were also conducted
with a multidimensional normal distribution, but those stud-
ies are not discussed because the small data set did not war-
rant more hidden dimensions. Student motivation is defined
as a discrete, dynamic variable. The first-order Markov as-
sumption is assumed to hold; therefore, motivation on the
(i + 1)th problem depends only on motivation on theith

problem. The motivation variable can take on as many val-
ues as can be distinguished given the type of interaction al-
lowed in the tutoring system. For the Wayang Tutor, we have
identified three values for the motivation variable:

1. unmotivated and exhausting the hints to reach the final
hint that gives the correct answer (‘unmotivated-hint’)

2. unmotivated and quickly guessing answers to find the cor-
rect answer (‘unmotivated-guess’)

3. motivated (‘motivated’)

The two unmotivated behaviors (1 and 2 above) are the most
prevalent examples of how students game the Wayang Tutor.
These are typical student behaviors and have been noted by
other researchers (Bakeret al. 2004). In Table 1, the stu-
dent exhibits theunmotivated-guessbehavior in the last five
problems due to the short response times.

The student model uses two observed variables for each
problem. The first variable is the student’s initial response
(Ui) which is either correct or incorrect. If a student’s initial
response is to ask for a hint, thenUi is labeled as incorrect.
The second observed variable (Hi) is defined as the evidence
corresponding to the hidden motivation variable, and thus
takes on as many values as the motivation variable. For the
Wayang Tutor,Hi has three values:

1. ‘many-hints’ if the number of hints seen before respond-
ing correctly> hmax (corresponds tounmotivated-hint)

Figure 2: A graphical depiction of the dynamic mixture
model based on Item Response Theory (DMM-IRT)

2. ‘quick-guess’ if the number of hints seen before respond-
ing correctly< hmin and if the time to first response<
tmin (corresponds tounmotivated-guess)

3. ‘normal’ if neither of the other two cases apply (corre-
sponds tomotivated)

This variable is defined using the number of hint requests
and time spent. Since the majority of intelligent tutoring sys-
tems already capture this data, the model has widespread use
with minimal or no change to the system architecture. How-
ever, the random variables in this model would not change
even if more sophisticated techniques or data sources were
necessary to detect motivation. The conditions for the values
of Hi would change to accommodate the new information.

The graphical model in Figure 2 describes how the ob-
served and latent variables are connected. As the dashed line
indicates, this model is a combination of a hidden Markov
model (HMM) and an Item Response Theory (IRT) model.
This is similar in structure to a switching state-space model
(Ghahramani & Hinton 2000) with two exceptions: the con-
tinuous variable in the DMM-IRT is static instead of dy-
namic and the DMM-IRT uses a different function relat-
ing the continuous variable to the observed variables. The
DMM-IRT is also similar to another class of models known
as latent transition analysis (Collins & Wugalter 1992), or
LTA. LTA employs dynamic, latent variables to capture
changes in a student’s ability over long periods of time. This
is different from the DMM-IRT which assumes ability is
static and motivation is dynamic.

The DMM-IRT is a mixture model where the mixtures
are defined by the behavior the student exhibits. This
is manifested in the model by the probability distribution
P (Ui|θ,Mi). When the student is motivated, the distribu-
tion is described by the IRT item characteristic curve. We
used the two-parameter logistic curve (Equation 2), but an
alternate form can also be employed.

P (Ui = correct|θ,Mi = motivated) =
1

1 + exp(−ai(θ − bi))
(2)

If the student is unmotivated, then the distribution takes



one of the following two forms.

P (Ui = correct|θ,Mi = unmotivated-guess) = di (3)

P (Ui = correct|θ,Mi = unmotivated-hint) = ei (4)

The constantdi corresponds to the probability of ran-
domly guessing the answer correctly. This is equivalent to
the pseudo-guessing parameterci in Equation 1. The con-
stantei is the probability of a correct response given the
unmotivated-hintbehavior. The value ofei should be close
to zero sinceUi is labeled as incorrect if the student’s first
response is to ask for a hint. A key model assumption is
that both distributions described by the unmotivated behav-
ior (Equations 3 and 4) do not depend on student proficiency
(e.g. the two variables are uncorrelated). Hence, an action
while in an unmotivated state will not alter the system’s cur-
rent estimate of a student’s proficiency. If this independence
assumption is correct, then the model does not underesti-
mate student proficiency by accounting for motivation.

Parameter Estimation
Marginal maximum likelihood estimation (Bock & Aitkin
1981) is the most common technique used to learn the IRT
problem parameters,ai and bi. For an implementation of
this algorithm, see (Baker & Kim 2004). This is an instance
of the expectation-maximization (EM) (Dempster, Laird, &
Rubin 1977) algorithm where the hidden student variables as
well as the parameters for each problem are estimated simul-
taneously. The parameters are chosen to maximize the likeli-
hood of the data. We adapted the Bock and Aitkin procedure
to include the latent motivation variables in the DMM-IRT.

The parameter estimation procedure iterates between the
expectation step and the maximization step. In the E-Step,
the probability distribution for the latent, continuous vari-
able,P (θ), is integrated out of the likelihood equation. This
integral is approximated using the Hermite-Gauss quadra-
ture method which discretizes the distribution. For this pa-
per, we used ten discrete points, or quadrature nodes, equally
spaced over the interval[−4,+4] to approximate the stan-
dard normal distribution. The E-Step results in estimates for
the probability of a correct response at each of the quadra-
ture nodes. These estimates are then used in the M-Step,
which is itself an iterative process, to determine the problem
parameters,ai andbi, that best fit the logistic curve.

Baker and Kim (2004) point out that this EM algorithm
is not guaranteed to converge because IRT models using the
two-parameter logistic equation are not members of the ex-
ponential family. We did not experience difficulty in getting
the algorithm to converge, which is consistent with other re-
ported findings.

Methodology
Domain
Experiments were conducted with data from high school stu-
dents using the Wayang Outpost (Arroyoet al. 2004). The
Wayang Outpost (http://wayang.cs.umass.edu ) is
an intelligent tutoring system for the mathematics section of
the SAT. The tutor presents multiple-choice geometry prob-
lems to students and offers them the option to seek help in

solving the problems. The data set consists of 401 students
and 70 problems, where a student attempted, on average, 32
of the 70 total problems. For each problem that a student
completed, the observed variables in the model (Ui andHi)
were recorded. The parameters used to determineHi were
set totmin = 5 seconds,hmin = 2 hints, andhmax = 2
hints for all seventy problems. A slightly more accurate
method would assign different values to different problems
based on the number of available hints and problem diffi-
culty.

Experiments
Three models were evaluated to determine their accuracy in
predicting whether a student would correctly answer his/her
next problem. We tested the DMM-IRT, an IRT model using
the two-parameter logistic equation that does not measure
student motivation, and a simple, default strategy of always
guessing that the student answers incorrectly (the majority
class label).

Given the relatively small size of the data set, not all the
DMM-IRT parameters were estimated simultaneously. The
discrete conditional probability tables associated with the
HMM were estimated first using only the observed motiva-
tion variables,H. The learned values for these three distri-
butions are shown below (where the order of values forMi is
unmotivated-hint, unmotivated-guess, andmotivated
and forHi is many-hints, quick-guess, and normal).
The probabilitydi (Equation 3) was set to0.2 for all sev-
enty problems, corresponding to an assumption of uniform
guessing as there are five answers to each multiple-choice
problem. The probabilityei (Equation 4) was set to0.01 for
all seventy problems. The item characteristic curve param-
etersai and bi (Equation 2) were then estimated for each
problem.

P (M1) =
(

0.1 0.1 0.8
)T

P (Hi|Mi) =

 0.7 0.05 0.25
0.05 0.7 0.25
0.05 0.05 0.9



P (Mi|Mi−1) =

 0.85 0.05 0.1
0.05 0.9 0.05
0.05 0.05 0.9


Validation
Five-fold cross validation was used to evaluate the models.
Thus, data from 320 students was used to train the mod-
els and 80 students to test the models’ accuracy. The test-
ing procedure involves using the trained model to estimate a
student’s ability and motivation given performance on previ-
ous problems (U1, H1, U2, H2, . . . , Ui−1, Hi−1), predict-
ing how the student will do on the next problem (Ui), and
comparing the student’s actual response with the predicted
response. This process is repeated for each student in the
test population and for each problem the student completed.
The result is an accuracy metric (correct predictions divided
by total predictions) that is averaged over the five cross val-
idation runs. Pseudocode for this procedure is provided in
Algorithm 1.



Algorithm 1 The cross validation framework
Input: aj , bj for each problem;U ,H for each student
Output: accuracy
for i = 1 to (# students in test population)do

// Assume U ij refers to the i’th student’s response
// (0 or 1) to the j’th problem he/she performed
for j = 2 to (max # problems student i finished)do
{θ̂, M̂j} ←MLE given (U i1,H

i
1, a1, b1), . . . ,

(U ij−1,H
i
j−1, aj−1, bj−1)

if P (Uj = correct|θ̂, M̂j) ≥ 0.5 then
Û ← 1

else
Û ← 0

if U ij == Û then
correct← correct + 1

else
incorrect← incorrect + 1

accuracy← correct / (correct + incorrect)

Cross Validation Accuracy
Model Average Minimum Maximum
Default 62.5% 58.2% 67.7%

IRT 72.0% 70.4% 73.6%
DMM-IRT 72.5% 71.0% 74.0%

Table 2: Average, minimum, and maximum accuracy values
over the five cross validation runs

Results
The experimental results are shown in Table 2. The DMM-
IRT achieved the best performance in terms of predicting the
probability of a correct student response. It predicted with
72.5% accuracy whereas the IRT model had 72.0% and the
baseline strategy of always predicting an incorrect response
attained 62.5%. Accuracy values in the 70-80% range are
generally good because both correct guesses and incorrect
slips from knowledgeable students occur in multiple-choice
tests.

The marginal improvement in performance by the DMM-
IRT over the IRT model is not statistically significant. How-
ever, it is interesting that the DMM-IRT made different pre-
dictions. The model predicted more incorrect responses than
the IRT model by accounting for student motivation. It is
useful to consider how this occurs in the DMM-IRT. If a stu-
dent is unmotivated and answers a problem incorrectly, then
the model’s estimate of proficiency does not decrease much.
While this leads to larger estimates of student proficiency,
this effect is offset by a decrease in the estimate of student
motivation. The dynamics in the motivation variable allow
the model’s predictions (about the probability of a correct
response to the next problem) to change more quickly than
could be achieved via the static accuracy variable. While this
lead to a modest improvement in prediction accuracy, we
hypothesize that the difference could be greater with longer
sequences where students perform more than 32 problems,
which was the average for this data set.

The effect of motivation in the model can be explained

Initial P (Mi = P (Mi = unmot−
Problem Time (s) motivated) ivated-guess)

1 40 0.99 0.01
2 44 0.99 0.01
3 13 0.99 0.01
4 19 0.99 0.01
5 7 0.97 0.02
6 22 0.92 0.07
7 35 0.72 0.26
8 2 0.05 0.94
9 2 0.01 0.99
10 3 0.01 0.99
11 2 0.01 0.99
12 2 0.01 0.99

Table 3: Smoothed estimates of the student’s motivation
level,P (Mi), for each of the twelve problems shown in Ta-
ble 1. The remaining probability mass is associated with the
unmotivated-hint behavior

by re-examining the student performance data from Table 1.
This time, we show the smoothed estimates for the marginal
probability of the motivation variable,P (Mi). These val-
ues, shown in Table 3, are the probability of the student
being in one of the three behavioral states:motivated,
unmotivated-guess, and unmotivated-hint. After the
seventh problem, the model believes the student is in an un-
motivated state and can therefore adjust its belief about how
the student will perform.

The data presented in Tables 1 and 3 is an ideal case
of a student displaying two distinct, non-overlapping be-
haviors. This is easily captured by the model dynamics,
P (Mi|Mi−1). Students do not always follow such ideal
behavior. The top line in Figure 3 shows smoothed esti-
mates of motivation for another student using the Wayang
Tutor. The student’s erratic behavior makes one-step pre-
dictions less reliable. Noisy dynamics may be hampering
the DMM-IRT from achieving larger gains in cross valida-
tion accuracy. Figure 3 also demonstrates the difference in
proficiency estimates between the IRT and DMM-IRT. The
DMM-IRT model does not decrease its estimate ofθ when
the probability of the student being motivated is low (for
example, during problems 26-31). The IRT model is poten-
tially underestimating the student’s ability.

Conclusions
We have presented and evaluated a dynamic mixture model
based on Item Response Theory (DMM-IRT). This model
uses a student’s behavior to disambiguate between profi-
ciency and motivation. Proficiency is modeled as a static,
continuous variable and motivation as a dynamic, discrete
variable. These assumptions are based on a student’s ten-
dency to exhibit different behavioral patterns over the course
of a tutoring session. The DMM-IRT is a combination of a
hidden Markov model and an IRT model. Given this gener-
ality, the model is easily tailored to many existing intelligent
tutoring systems and can handle additional forms of unmoti-
vated behavior. Users need only identify the evidence for the
unmotivated behavior,P (H|M), and the effect on the prob-
ability of a correct response,P (U |θ,M). The experiments,



Figure 3: The top line (right y-axis) shows smoothed esti-
mates of a student’s motivation. The bottom two lines (left
y-axis) show the maximum likelihood estimates ofθ after i
problems for the DMM-IRT (solid) and IRT (dashed)

though run offline in Matlab, were sufficiently fast that on-
line inference in a tutoring system will occur in real time.
These properties of the DMM-IRT satisfy the four principles
discussed in the relevant literature section. We also point
out that the model can be useful for other domains, such as
object recognition, where a dynamic variable (e.g. lighting
conditions) changes the context under which the static vari-
able (e.g. shape of the object) is observed.

Experiments were conducted with real data of students
using a geometry tutoring system. Results suggest that the
DMM-IRT can better predict student responses compared to
a model that does not account for motivation. The DMM-
IRT produced increased estimates of student proficiency
by assuming unmotivated behavior is independent of profi-
ciency. This capability is important for preventing underes-
timation in low-stakes assessment, but further investigation
is required to determine the correlation between these two
variables.

In the future, we plan to implement the model to run on-
line with the Wayang Tutor. Various strategies will be ex-
plored to determine (1) how quickly an unmotivated student
can be re-engaged, and (2) the effect on the student’s learn-
ing. We hope to improve cross-validation accuracy by updat-
ing the model’s dynamics to better reflect student behavior.
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