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Abstract lyzing the large-scale topological structure of the ungerl
ing environment. This approach formalizes Saul Amarel’s
(Amarel 1968) paradigm where agents learn representations
throughglobal analysis of a state space. Amarel’s ideas

Most work on value function approximation adheres to
Samuel’s original design: agents learn a task-specific
value function using parameter estimation, where the

approximation architecture (e.g, polynomials) is speci- motivated much su_bsequent research on representation dis-
fied by a human designer. This paper proposes a novel covery (Subramanian 1989; Utgoff & Stracuzzi 2002), and
framework generalizing Samuel's paradigm using a many methods for discovering global state space properties
coordinate-freeapproach to value function approxima- like “bottlenecks” and “symmetries” have been studied (Mc-
tion. Agents learn both representations and value func- Govern 2002; Ravindran & Barto 2003; Manratral. 2004

tions by constructing geometrically customized task- Simsek & Barto 2004). However, this past research lacked
independent basis functions that form an orthonormal a formal framework showing how state space geometry can

set for the Hilbert space of smooth functions on the
underlying state space manifold. The approach rests
on a technical result showing that the space of smooth

be transformed into representations for approximatingeval
functions: this paper provides such a unifying framework.

functions on a (compact) Riemannian manifold has a The proposed framework is based on a coordinate-free
discrete spectrum associated with the Laplace-Beltrami operator model, where representations emerge from an ab-
operator. In the discrete setting, spectral analysis of stract harmonic analysis of thepologyof the underlying

the graph Laplacian yields a set of geometrically cus- state space. Value functions are viewed as elements of the
tomized basis functions for approximating and decom- Hilbert space of smooth functions ofRéemannian manifold
posing value functions. The proposed framework gener- (Rosenberg 1997). Hodge theory (Rosenberg 1997) shows
alizes Samuel's value function approximation paradigm that the Hilbert space of smooth functions on a Riemannian

by combining it with a formalization of Saul Amarel’s
paradigm of representation learning through global state
space analysis.

manifold has a discrete spectrum captured by the eigenfunc-
tions of theLaplacian a self-adjoint operator on differen-
tiable functions on the manifold. In the discrete settiig, t
. eigenspace of the self-adjoint graph Laplacian operatmr pr
Introduction vides an orthonormal set of basis functions that can approx-
Arthur Samuel (Samuel 1959) pioneered the study of value imate any function on the graph (Chung 1997).
function approximation: his checkers program adjusted the  Informally, agents learn representations that reflect the
coefficients of a fixed polynomial approximator so that val- agent's experience and an environmenégje-scalege-
ues of states earlier in a game reflected outcomes experi-ometry. An agent “living” in aone-dimensionagnviron-
enced later during actual play. Samuel’s pioneering ideas ment (e.g., the “chain” MDP in (Lagoudakis & Parr 2003;
were formalized using the framework of Markov decision Koller & Parr 2000)) should “see” the world differently
processes (MDP) (Puterman 1994), leading to the field of from an agent “inhabiting” digure-of-eighenvironment or
reinforcement learning (RL) (Sutton & Barto 1998). Sub- aclosed chairor atwo-dimensionajrid world. The unex-
stantial expertise has been gained in value function approx pected result from applying the coordinate-free approach i
imation for linear and nonlinear architectures (Bertsekas  that Laplacian eigenfunctions resemble actual value func-
Tsitsiklis 1996). However, most systems remain constchine tions, and appear remarkably adept at value function ap-
by Samuel’s paradigm where agents do not learn the under- proximation. This similarity suggests a new framework for
lying representation. This paper proposes a novel general- RL where agents learn a suite of “proto-value” or task-
ization of Samuel's paradigm, where the basis representa- independent value functions, which can then subsequently
tions for value function approximation are learned by ana- approximate task-specific value functions using rewards

— . . . (Mahadevan 2005a).
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bution over future states when an actiom is performed in
states, and a corresponding reward mode],, specifying

a scalar cost or reward. Abstractly, a value function is a
mappingS — R or equivalently a vectoe RI5I. Given a
policy r : S — A mapping states to actions, its correspond-
ing value functionV™ specifies the expected long-term
discounted sum of rewards received by the agent in any
given states when actions are chosen using the policy. Any
optimal policy 7* defines the same unique optimal value
functionV* which satisfies the nonlinear constraints

Vi(s) = mgxz P, (R, +~4V*(s")

Classical techniques, includimglue iterationandpolicy it-
eration (Puterman 1994), represent value functions exactly
using the orthonormal bas{g, .. ., ¢|5|) of the Euclidean

spacer!S!, wherep; = [0...1...0] has al only in thei*"
position. Linear approximation techniques, such as least-
squares policy iteration (Lagoudakis & Parr 2003) and lin-
ear programming methods for factored MDPs (Guegtin

al. 2003), use a set diandcodedbasis functionsp;(s),
where the number of basis functioks< |S|. The pro-
posed approach differs in that value functions are decom-
posed into a linear sum of learned global basis functions
using spectral analysis of the state space graph topology.
This approach differs from methods for tuning or adapt-
ing basis functions from a predefined set for a specific task
(Menache, Shimkin, & Mannor 2005; Poupattal. 2002).
Second, since basis functions are learned and represente
using a coordinate-free model of the underlying manifold,
they reflect large-scalgeodesiconstraints: states close in
Euclidean (or some other normed) distance can be assigne
very different values if they are far apart in manifold space
(e.g., two states on opposite sides of a wall).

L aplace Operator on Riemannian M anifolds

This section introduces the Laplace-Beltrami operatonén t
general setting of Riemannian manifolds (Rosenberg 1997),
as a prelude to describing the Laplace-Beltrami operator in
the more familiar setting of graphs, namely spectral graph
theory (Chung 1997). These topics are increasingly finding
applications in Al, from image segmentation (Shi & Malik
2000) and clustering (Ng, Jordan, & Weiss 2002) to semi-
supervised learning (Belkin & Niyogi 2004). However,
what is novel to this paper is the use of Laplacian methods
for function approximation, by modeling value functions as
real-valued functions on a manifold. Formallypaanifold

M is alocally Euclideanset, with ahomeomorphisr(a bi-
jective or one-to-one and onto mapping) from any open set
containing an element € M to the n-dimensional Eu-
clidean spacék™. Manifolds with boundariesare defined

should be a differentiable function with a differentialde i
verse. Given two coordinate functiopgp) and £(p),
charts the induced mapping : po ¢! : R* — R
must have continuous partial derivatives of all orddRge-
mannianmanifolds are smooth manifolds where the Rie-
mann metric defines the notion of length. Given any ele-
mentp € M, thetangent spacé&, (M) is ann-dimensional
vector space that is isomorphic®®. A Riemannian man-
ifold is a smooth manifoldM with a family of smoothly
varying positive definite inner products,p € M where

gp : Tp(M) x T,(M) — R. For the Euclidean spade”,

the tangent spacE, (M) is clearly isomorphic t&R™ itself.
One example of a Riemannian inner product®his sim-

ply g(z,y) = (z,y)r~ = >, xiy;, Which remains the same
over the entire space. If the space is defined by probability
distributionsP(X |#), then one example of a Riemann met-
ric is given by the Fisher informatidh(6).

Hodge’s theorem states that any smooth function on a
compact manifold has a discrete spectrum mirrored by the
eigenfunction®f A, the Laplace-Beltrami self-adjoint op-
erator. On the manifol®R™, the Laplace-Beltrami operator

isSA =3, 83—; (often written with a— sign for conven-

tion). Functions that solve the equatidyy = 0 are called
harmonic functiongAxler, Bourdon, & Ramey 2001). For
example, on the plan®?, the “saddle” functionz? — 32
is harmonic.Eigenfunction®f A are functionsf such that
Af = Mf, where\ is an eigenvalue ofA. If the domain

s the unit circleS?, the trigonometric functionsin(#) and

cos(f) form eigenfunctions, which leads Eourier analysis.
Abstract harmonic analysis generalizes Fourier methods to

OIsmooth functions on arbitrary Riemannian manifolds. The

smoothness function&r an arbitrary real-valued function
on the manifoldf : M — R is given by

S(f) = /M |VF P dp = /M FASdu =< AS, f > 200

where L3(M) is the space of smooth functions o,
andV f is the gradient vector field of. For a Riemannian
manifold (M, g), where the Riemannian metrjds used to
define distances on manifolds, the Laplace-Beltrami opera-
tor is given as

1 .
A=——="0(Vietg g79;)
Tt g %: i etg g-0oj
whereg is the Riemannian metridget g is the measure of

volume on the manifold, and;, denotes differentiation with
respect to the’” coordinate function.

Theorem 1 (Hodge (Rosenberg 1997)): LéiM, g) be a
compact connected oriented Riemannian manifold. There
exists an orthonormal basis for all smooth (square-

using a homeomorphism that maps elements to the upperintegrable) function€?(M, g) consisting of eigenfunctions

half plane’H™. A manifold is a topological space, i.e. a
collection of open sets closed under finite intersection and
arbitrary union. In smooth manifolds, the homeomorphism
becomes aliffeomorphismor a continuous bijective map-
ping with a continuous inverse mapping, to the Euclidean
spaceR™. In a smooth manifold, a diffeomorphism map-
ping any poinip € M to its coordinateq p1 (p), . . . , pn(p))

of the Laplacian. All the eigenvalues are positive, except
that zero is an eigenvalue with multiplicity 1.

In other words, Hodge’s theorem shows that a smooth
function f € L2*(M) can be expressed af(x)
Z;’io a;e;(z), wheree; are the eigenfunctions ah, i.e.
Ae; = \e;. The SmOOthnesg(ei) =< Aei,ei >£2(M):
i



Graph Laplacian and Spectral Graph Theory

The continuous manifold setting provides a motivation for

wheref = T—2g. The first eigenvalue i3, = 0, and
is associated with the constant functigfw) = 1, which

the discrete case studied in spectral graph theory. The means the first basis function(u) = V7' 1. Note that
Laplace-Beltrami operator now becomes the graph Lapla- the first eigenfunction (associated with eigenvaljef the

cian (Chung 1997), from which an orthonormal set of basis
functionsg{ (s), ..., ¢¢ (s) can be constructed that asymp-
totically capture any real-valued function éh The graph
Laplacian can be defined in several ways, such asdhe
binatorial Laplacian and thenormalizedLaplacian, in a
range of models from undirected graphs with 1) edge
weights to directed arbitrary weighted graphs with loops
(Chung 1997). For simplicity, consider an undirected graph
G = (V,E) without self-loops, wherel, denote the de-
gree of vertexs. DefineT to be the diagonal matrix where
T(v,v) = d,. Note that for an unweighted graph, the op-
eratorT ' A, where A is the adjacency matrix, induces a
random walk on the graph. Thmmbinatorial Laplacian
operator is defined as the matiix= T — A:

dy, fu=v
L(u,v) =< —1 if wandv are adjacent
0 otherwise

whereas thanormalized LaplacianC of the graphG is
defined as
1 ifu=wvandd, #0
L(u,v)={ —7 if uvandv are adjacent
0 otherwise

These definitions can be extended to weighted (directed)
graphs, where weights can reflect any local distance mea-
sure (Chung 1997). Since almost any function approxima-

tor studied previously in MDPs and RL isotropic e.g,
polynomials or CMAC or RBF, modeling manifolds using
undirected graphs gives sufficient generality to handletmos
cases. Sincg€ is symmetric, its eigenvalues are all real and
non-negative. It easily follows from the above definitioatth

L=T"%LT"%
If G is a constant degreg graph, then it follows that
L=1- %A, where A is the adjacency matrix aff. For
ageneral graptyr, £ = T—3LT 2 =]-T 2AT 3. The
Laplacian’ is anoperatoron the space of functions defined

on the graply : V. — R, where (¢ ~ v means: andv are
neighbors):

_ 1 g(u)

viu~v

g9(v)
)

The Rayleigh quotienprovides a variational characteri-
zation of eigenvalues of. Eigenvalues can be found by
projections of an arbitrary functiop : V' — R onto the
subspaceCg. The quotient gives the eigenvalues and the
functions satisfying orthonormality are the eigenfunetio
(here(f,g9)c = >_,, f(u)g(u) denotes the inner product on
graphG):

(9,Lg)

(9,9

(g, T2 LT 2g)
(9, 9)

S (Fw) — F(0)?

combinatorial Laplaciarl. is just the constant functiof.
The second eigenfunction is the infimum over all functions
g : V — R that are perpendicular g (), which gives us a
formula to compute the first non-zero eigenvalyenamely
2 2

D SR C ) L) O YA 1Y
fvTl 2, FA(u)dy S 1112

The last term characterizes the eigenvalues of the
Laplace-Beltrami operator. The Rayleigh quotient for
higher-order eigenfunctions is similar: each functionés-p
pendicular to the subspace spanned by previous functions.
TheCheegerconstant:; of a graphG is defined as

ha(S) = min M
S min(vol S,vol S)

Here, S is a subset of verticesy is the complement of
S, andE(S, S) denotes the set of all edgés, v) such that
u € Sandv € S. The volume of a subsef is defined
asvolS = _sdx. The sign of the basis functions can
be used to decompose state spaces (see the Missionaries and
Cannibals problem in Figure 1 and the MDP in Figure 4).
Consider the problem of finding a subsgtof states such
that the edge boundagyS contains as few edges as possi-
ble, wheredS = {(u,v) € E(G) : v € Sandv ¢ S}.
The relation betweeflS and the Cheeger constant is given
by |0S] > hg volS. In the Missionaries and Canni-
bals task, the Cheeger constant is minimized by setfing
to be the states from throughg, since this will mini-
mize the numeratoF (S, S) and maximize the denomina-
tor min(vol S,vol S). A remarkable identity connects the
Cheeger constant with the spectrum of the Laplace-Beltrami
operator. This theorem underlies the reason why basis func-
tions associated with eigenvalues of the Laplace-Beltrami
operator reflect the intrinsic geometry of environmenteg (se
also Figure 5).
Theorem 2 (Chung 1997): Define\; to be the first (non-
zero) eigenvalue of the Laplace-Beltrami operatbion a
graphG. Lethg denote the Cheeger constant@f Then,
we havehg > Ap.

A =

Algorithms

The proposed approach suggests a range of algorithms, vary-
ing in their complexity. This section presents the simplest
methods used in the experiments described below, and more
elaborate extensions are discussed in the concluding sec-
tion. Algorithms derived from this framework result from
implementation choices for the four main steps: explorgtio
graph construction and analysis, basis function construct

and value function approximation. In the first step, agents
explore the environment and record an experience sample
of tuples(s, a, s’,r). The exploration policy can be a ran-
dom walk, or it can be guided by actual or intrinsically mo-
tivated rewards (Singh, Barto, & Chentanez 2005). Meth-
ods like least-squares policy iteration (LSPI) (Lagoudd&ki



Parr 2003) assume an initial data set of sample transitons t 1 2 15 16

with edges(s, s’) based on observed state transitions. A | \

more sophi(sticazed approach is to use some positive-aefinit

or even indefinite weight matrix, where weights are esti- | ‘

mated transition probabilities or can even include rewards S‘—’7 <—>
Graphs analysis comprises of computing the combinatorial

or normalized graph Laplacian, and solving the eigenvec- S
tor problemLv = Av. In the experiments reported be- I

low, the combinatorial Laplacian was used, although both S e *
approaches have been implemented and tested. Step 3 con- o /”
structs the basis functions, which in the simplest casehare t o

low-order eigenfunctions of the graph Laplacian. A more b T hierncrousmsrome s ot
sophisticated choice is discussed later. Finally, in Step 4

rewards are combined with the learned basis functions to
approximate task-specific value functions. Denote the ba-

learn policies; this same sample can also be used to build the TN / ]
graph. The second step involves constructing and analyzing a 4 13
the graph. A simple approach is to build an undirected graph I / \‘

sis function set byds = {v1,...,vx}. Assume noisy

samples of the target value functidf or V* are known Figure 1: Shown here on top is the graph representing the
on a subset of states, so tHat= (V(s1),...,V(sm))7, missionaries and cannibals problem. The plots below show
whereSg = {s1,...,sm}. The low-dimensional recon-  the optimal value function (top plot), and a basis eigenfunc
struction of a value functiofy’ of dimensionR!S! into R* tion from the orthonormal set spanning the Hilbert space of

for k < |S| is computed as follows. Define the Gram smooth functions on this graph. These basis functions can

matrix K¢ = (®¢)7®C, where ¢ is the component  look surprisingly similar to value functions; their signmni
wise projection of the basis functions onto the stateSdn rors the two-sided symmetry of this state space. The bottom
and K¢ (i,j) = Y., vivF. The coefficients are found us-  figure shows the optimal value function is aimost exactly ap-
ing a least-squares approach, by solving the equatien proximated with just two learned basis functions, achigvin
K5 (®5,)TV wherea = (ai, ..., 5,|) are the coeffi- a dimensionality reduction fromR !¢ — R2.

cients. Control learning methods such as Q-learning ot-leas
squares policy iteration (LSPI) (Lagoudakis & Parr 2003)
are easily combined with the proposed framework. In par-
ticular, a new algorithm calleRepresentation Policy Itera-
tion (RPI) has been developed, which iterates between using
the current policy to learn a new representation, and using
the learned representation to find a new policy (Mahadevan
2005b). In initial experiments, RPI outperformed LSPI on
the classic chain problem (Koller & Parr 2000) using two
handcoded state embeddings (polynomials and radial basis
functions).

(Koller & Parr 2000; Lagoudakis & Parr 2003). Here, a state
s is mapped to the monomialgs) = [1 s...s']T. This en-
coding easily extends to a state action encodifig a) by
addinglog, | A| bits for encoding actions. Interestingly, this
basis set is a special case of the proposed framework which
builds customized orthonormal basis sets for an arbitrary
graph (manifold). For example, choosihg- 3 would map
statel above top(1) = [1 1 1]7, state2 to ¢(2) = [1 2 4]7,
state3 to ¢(s) = [1 3 9] and so on, reducing the value
function dimensionality fronR'¢ — R3. As it happens,

. . this polynomial embedding works well on the Missionaries
Illustrative Experiments and Cannibals problem, but not for the MDPs shown in Fig-

This section illustrates the framework using experiments o ure 2 and Figure 3. In contrast, the proposed approach auto-
simple deterministic MDPs, as these suffice to highlight the matically builds the basis functionss) using global state
main ideas. The experiments also assume step 1 has beergpace analysis, achieving a dimensionality reductionad go-
completed yielding a complete graph of the environment @as the polynomial encoding for the Missionaries and Canni-
for analysis (the problem of analyzing partial graphs is dis  Pals problem, and far superior to it for the MDPs shown in
cussed below). It is instructive to begin with Amarel's elas ~ Figure 2 and Figure 3. Figure 1 shows that the shape of the
sic Missionaries and Cannibals problem shown in Figure 1. Second basis function of the combinatorial Laplacian (show
This environment is modeled as an undirected graph. The for convenience with the sign inverted) resembles the value
initial state is3300L (top left node numbered 1) indicating ~ function. This is no coincidence: the Laplacian is an op-
that all the three missionaries and cannibals are on the left erator on the Hilbert space of functions on the graph that
bank, and the boat is on the left bank as well. The goal state €nforcesgeodesismoothness in a manner analogous to the
is 0033R (top right node numbered 16), where the mission- Bellman backup operator on the space of value functions in
aries and cannibals are safely on the other side. an MDP. Both map neighboring vertices on the graph to ad-
The proposed approach of learning representations for jacent real values.
function approximation can be contrasted with handcoded Figure 3 demonstrates that Laplacian eigenfunctions ex-
approaches such as thgolynomial encodingstudied in cel on standard RL benchmark problems: the mean-squared
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error using the Laplacian basis functions orB@ x 30

grid world environment is substantially less than the hand-
coded polynomial state encoding. Figure 4 shows Laplacian
eigenfunctions can recursively decompose larger MDPs into
smaller ones. This figure also shows that eigenfunctions de-
rived from the right topology are much more effective than
those produced from a dramatically incorrect topology (a
complete graph). Figure 5 shows geometric structure dis-
covery and value function approximation for a larger five
room grid world MDP.

1 2
3 4 7
5 6 Goal ®)

Value Function

| optimal
| value function

1 eigen
| function

Eigenvector component

Laplace-Beltrami Approximation of Value Function

Least-squares
71 error using eigen
- functions

Mean squared ertor

Figure 2: For the environment shown in (a), an eigenfunc-
tion of the (graph) Laplacian shown in (d), from the or-
thonormal basis set of smooth functions on the manifold,
closely resembles the value function shown in (c). (b) and
(e) show the optimal value function can be approximated
with just two learned basis functions. The plot in (b) com-

Second eigenfunction Fourth eigenfunction

Environment

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Figure 4: Laplacian eigenfunctions decompose the state
space of a MDP into smaller units. Here, the second eigen-
function splits the environmentinto three “arms”. The fibur
eigenfunction splits each arm into two symmetric pieces.
The bottom plot shows mean-squared error using Lapla-
cian eigenfunctions from the right topology (top curve) is
much lower than from an incorrect (complete graph) topol-
ogy (bottom curve).

Analysisand Future Work

The proposed approach can be extended to weighted graphs,
where the weights reflect estimated transition probabdliti

or rewards. Learning such graphs will require more sam-
ples. Once a graph is learned, the complexity of spectral
analysis isO(N?), whereN is the number of nodes in the

pares the mean-squared error using the learned representagraph. However, sample-based approximations can signif-

tion (bottom curve) with a fixed polynomial encoding (top
curve) for varying numbers of basis functions.

o

1000

Figure 3: Mean squared error in approximating the optimal
value function for a30 x 30 grid world for varying num-
bers of learned Laplacian basis functions (bottom curvd) an
varying degrees of handcoded polynomials (top curve).

icantly reduce this complexity. The approach can be ex-
tended to the more realistic case where agents can only build
partial graphs as discussed below. In large state spaces, ex
ploration, graph construction, and spectral analysis @n b
interleaved.

A number of specific directions are being investigated to
scale the approach. The state space can be modeled at mul-
tiple levels of abstraction, where higher level graphs can b
viewed as a SMDP-homomorphism of lower-level graphs
(Ravindran & Barto 2003). Laplacian eigenfunctions cap-
ture symmetries and other geometric regularities for auto-
matically learning homomorphismsNystromapproxima-
tions for solving integral equations reduce the complexdty
spectral analysis fror®(N?) to O(m?N) wherem < N
is the number of samples for which complete local distance
information is available (Fowlkest al. 2004). A number
of other randomized low-rank approximations show that in-
teresting linear algebra can be performed in time indepen-
dent of the size of the matrix (Achlioptas, McSherry, &
Scholkopff 2002; Frieze, Kannan, & Vempala 1998). An-
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Figure 5: Top: eigenfunctions learned for a five-rooom en-
vironmentwith5 x 21 x 20 = 2100 states. Middle: the opti-
mal value function; Bottom: approximation usidglearned
eigenfunctions.

other direction being investigated is to build a sparsednier
chical representation of the Laplace-Beltrami operatorgis
diffusion wavelet¢Coifman & Maggioni ). This approach
yields a multi-scale hierarchical tree of learned basicfun
tions, which can be efficiently computed (N log? N).
Unlike Fourier methods, which are based on differential

equations, wavelets are based on dilation equations and use

basis functions with compact support. A detailed compar-
ison of diffusion wavelets and Laplacian eigenfunctions is
underway (Mahadevan & Maggioni 2005).
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