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Abstract

In this paper, we address the issue of rational communi-
cation behavior among autonomous agents. We extend our
previously reported cooperative hierarchical reinforcement
learning (HRL) algorithm to include communication deci-
sion and propose a new multiagent HRL algorithm, called
COM-Cooperative HRL. In this algorithm, at specific lev-
els of the hierarchy, calledcooperation levels, a group of
subtasks, in which coordination among agents has signifi-
cant effect on the performance of the overall task, are de-
fined ascooperative subtasks. Coordination skills among
agents are learned faster by sharing information atcoop-
eration levels, rather than the level of primitive actions. We
add a communication level to the hierarchical decomposi-
tion of the problem, below eachcooperation level. A com-
munication action has a certain cost and is used by each
agent to obtain the actions selected by thecooperative sub-
tasksof the other agents. Before making a decision at aco-
operative subtask, agents decide if it is worthwhile to per-
form a communication action in order to acquire the ac-
tions chosen by thecooperative subtasksof the other agents.
Using this algorithm, agents learn a policy to balance the
amount of communication needed for proper coordination,
and communication cost. We demonstrate the efficacy of the
COM-Cooperative HRLalgorithm as well as the relation
between communication cost and the learned communica-
tion policy, using a multiagent taxi domain.1

1. Introduction

Cooperative multiagent learning studies algorithms for
selecting actions for multiple agents coexisting in the same
environment and working together to accomplish a task.

1 First author of this paper is a student.

The reinforcement learning (RL) framework has been well-
studied in cooperative multiagent domains [1, 2, 4, 16].
Multiagent RL has been recognized to be more challeng-
ing than single-agent RL for two main reasons:1) curse of
dimensionality: the number of parameters to be learned in-
creases dramatically with the number of agents, and2) par-
tial observability: states and actions of other agents which
are required for decision making by an agent are not fully
observable and inter-agent communication is usually costly.
Prior work in multiagent RL have addressed thecurse of di-
mensionalityin many different ways. One natural approach
is to restrict the amount of information that is available to
each agent and hope to maximize global payoff by solving
local optimization problems [11, 14]. Another approach is
to exploit the structure in the multiagent problem using fac-
tored value function architecture [7, 9]. This approach ap-
proximates the joint value function as a linear combination
of local value functions, each of which relates only to the
parts of the system controlled by a small number of agents.
Factored value functions allow the agents to find a globally
optimal joint-action using a message passing scheme. How-
ever, these works do not address the communication cost of
their message passing strategy.

Almost all the above methods ignore this fact that an
agent might not have free access to other agents’ informa-
tion which are required for its decision making. In general,
the world ispartially observablefor agents in distributed
multiagent domains. One way to address partial observabil-
ity in these domains is to use communication to exchange
information among agents. However, since communication
is usually costly, in addition to its normal actions, each
agent needs to make decision about communicating with
other agents [12, 17]. The trade-off between the quality of
solution and the communication cost is currently a very ac-
tive area of research in multiagent learning and planning.

In our previous work [10], we introduced a different
approach to addresscurse of dimensionalityand partial
observabilityin cooperative multiagent systems. The key



idea underlying the approach is that coordination skills are
learned much more efficiently if the agents have a hierarchi-
cal representation of the task structure. Agents have only a
local view of the overall state space, and learn joint abstract
action-values by communicating with each other only the
high-level subtasks that they are doing. It reduces the num-
ber of parameters to be learned. Furthermore, since high-
level subtasks can take a long time to complete, communi-
cation is needed only fairly infrequently and this is a sig-
nificant advantage over flat techniques. Although, the hi-
erarchical RL (HRL) algorithm proposed in that work re-
duces the amount of communication required for coordina-
tion among agents, it does not address the issue of rational
communication behavior, which is important when commu-
nication is costly. In this paper, we generalize our previous
algorithm to include communication decisions and propose
a new multiagent HRL algorithm, calledCOM-Cooperative
HRL. In this algorithm, at specific levels of the hierarchy,
calledcooperation levels, we define a group of subtasks as
cooperative subtasks. These are the subtasks, in which co-
ordination among agents has significant effect on the perfor-
mance of the overall task. Agents learn coordination skills
by sharing information atcooperation levels, rather than the
level of primitive actions. We add a communication level
to the hierarchical decomposition of the problem, below
eachcooperation level. A communication action has a cer-
tain cost and can be used by each agent to obtain the ac-
tions selected by thecooperative subtasksof other agents.
Using this algorithm, agents learn a policy to balance the
amount of communication needed for proper coordination,
and communication cost. We demonstrate the efficacy of
the COM-Cooperative HRLalgorithm as well as the rela-
tion between communication cost and communication pol-
icy, using a multiagent taxi domain.

2. Hierarchical Multiagent RL Framework

In this section, we introduce the hierarchical multiagent
RL framework used in the multiagent HRL algorithm intro-
duced in this paper. Our HRL framework builds upon the
MAXQ value function decomposition [5], and the options
model [15].

2.1. Hierarchical Task Decomposition

To illustrate our hierarchical multiagent RL framework
and algorithm, we present a multiagent taxi problem, which
will also be used in the experiments of this paper. Con-
sider a 5-by-5 grid world inhabited by two taxis (T 1 and
T 2) shown in Figure 1. There are four specially designated
locations in this domain, marked as B(lue), G(reen), R(ed)
and Y(ellow). The task is continuing, passengers appear ac-

cording to a fixed passenger arrival rate2 at these four lo-
cations and wish to be transported to one of the other loca-
tions chosen randomly. Taxis must go to the location of a
passenger, pick up the passenger, go to its destination loca-
tion, and put down the passenger there. The throughput of
the system is measured in terms of the number of passen-
gers dropped off at their destinations per 5000 steps.
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Figure 1. A multiagent taxi domain.

Hierarchical RL methods provide a general framework
for scaling RL to problems with large state spaces by using
the task structure to restrict the space of policies. In these
methods, the overall task is decomposed into a collection of
subtasks that are important for solving the problem. Each
of these subtasks has a set of termination states, and termi-
nates when one of its termination states is reached. Each
primitive action (North, West, South, East, PickupandPut-
down) is a primitive subtask in this decomposition, such that
it is always executable and it terminates immediately after
execution. On the other hand, non-primitive subtasks such
asroot (the whole taxi problem),Put, Get B, G, R and Y,
Navigate toB, G, R and Y, might take more than one time
step to complete. After defining subtasks, we must indicate
for each subtask, which other primitive or non-primitive
subtasks it should employ to reach its goal. For example,
navigation subtasks use four primitive actionsNorth, West,
SouthandEast. Put uses four navigation subtasks plus one
primitive actionPutdown, and so on. All of this informa-
tion is summarized by the task graph shown in Figure 2.

2.2. Temporal Abstraction using SMDPs

Hierarchical RL studies how lower level policies over
subtasks or primitive actions can themselves be composed
into higher level policies. Policies over primitive actions are
semi-Markov when composed at the next level up, because
they can take variable, stochastic amount of time to com-
plete. Thus, semi-Markov decision processes (SMDPs) [8]
have become the preferred language for modeling tempo-
rally extended actions. SMDPs extend the MDP model in

2 Passenger arrival rate 10 indicates that on average, one passenger ar-
rives at stations every 10 time steps.
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Figure 2. The task graph of the multiagent
taxi domain.

several aspects. Decisions are only made at discrete points
in time. State of the system may change continually be-
tween decisions, unlike MDPs where state changes are only
due to the actions. Thus, the time between transitions may
be several time units and can depend on the transition that
is made. These transitions are at decision epochs only. Basi-
cally, the SMDP represents snapshots of the system at deci-
sion points, whereas the so-callednatural processdescribes
the evolution of the system over all times.

In this section, we extend SMDP to multiagent do-
main, when a team of agents controls the process, and
introduce the multiagent SMDP (MSMDP) model. We as-
sume agents are cooperative, i.e., each has the same reward
and all maximize the same utility over an extended pe-
riod of time. The individual actions of agents interact in
that the effect of one agent’s action may depend on the ac-
tions taken by the others. When a group of agents perform
temporally extended actions, these actions may not ter-
minate at the same time. Therefore, unlike the multiagent
extension of MDP (MMDP model [1]), the multiagent ex-
tension of SMDP is not straight forward.

Definition 1: A multiagent SMDP (MSMDP) is de-
fined as a six tuple (α,S,A,P ,R,τ ) as follows:

The setα is a finite collection ofn agents, with each
agent j ∈ α having a finite setAj of individual ac-
tions. An element~a = 〈a1, . . . , an〉 of the joint-action space
A =

Qn

j=1
Aj, represents the concurrent execution of ac-

tions aj by each agentj. The componentsS, R and P

are as in an SMDP, the set of states of the system be-
ing controlled, the reward function mappingS → <, and
the state and action dependent multi-step transition prob-
ability function P : S × N × S × A →[0, 1] (whereN is
the set of natural numbers). Since individual actions in a
joint-action are temporally extended, they may not termi-
nate at the same time. Therefore, the multi-step transition
probability functionP depends on how we define deci-
sion epochs, and as a result, depends on the termination

schemeτ that is used in the MSMDP model. Three ter-
mination strategiesτany, τall and τcont for temporally
extended joint-actions were investigated in [13]. Inτany ter-
mination scheme, the next decision epoch is when the
first action within the joint-action currently being exe-
cuted terminates, where the rest of the actions that did not
terminate are interrupted. When an agent reaches a de-
cision point (drops off a passenger), all other agents in-
terrupt their actions, next decision epoch occurs and a
new joint-action is selected (taxiT1 chooses to pick
up passenger at R and taxiT2 decides to pick up pas-
senger at B). Inτall termination scheme, the next deci-
sion epoch is the earliest time at which all the actions
within the joint-action currently being executed have ter-
minated. When an agent completes a subtask, it waits
(takesidle action) until all other agents complete their cur-
rent subtask. Then, next decision epoch happens and agents
choose next joint-action together. In both these termina-
tion strategies, all agents make decision at every deci-
sion epoch.τcont termination scheme is similar toτany in
the sense that the next decision epoch is when the first ac-
tion within the joint-action currently being executed ter-
minates. However, the other agents are not interrupted and
only terminated agents select new actions. In this termi-
nation strategy, only a subset of agents choose action at
each decision epoch. When an agent terminates a sub-
task, next decision epoch occurs only for that agent and it
selects its next action given the information about the sub-
tasks being performed by other agents. 2

The three termination strategies described above are the
most common, but not the only termination schemes in co-
operative multiagent activities. A wide range of termina-
tion strategies can be defined based on them. Of course,
all these termination schemes are not appropriate for ev-
ery multiagent task. We categorize termination strategies
assynchronousandasynchronous. In synchronousschemes,
such asτany andτall, all agents make decision at every deci-
sion epoch and therefore we need a centralized mechanism
to synchronize agents at decision epochs. Inasynchronous
strategies, such asτcont, only a subset of agents make de-
cision at each decision epoch. In this case, there is no need
for a centralized mechanism to synchronize agents and de-
cision making can take place in a decentralized fashion.

While SMDP theory provides the theoretical underpin-
nings of temporal abstraction by allowing for actions that
take varying amounts of time, the SMDP model provides lit-
tle in the way of concrete representational guidance which
is critical from a computational point of view. In particu-
lar, the SMDP model does not specify how tasks can be
broken up into subtasks, how to define policy for subtasks,
how to decompose value function etc. We examine these is-
sues in the rest of this section.

Mathematically, a task hierarchy such as the one in Fig-



ure 2 can be modeled by decomposing the overall task
MDP M , into a finite set of subtasks{M0, . . . , Mn}, where
M0 is theroot task and solving it solves the MDPM .

Definition 2: Each non-primitive subtaski consists of
five components(Si, Ii, Ti, Ai, Ri):

• Si is the state space for subtaski and is described by
those state variables that are relevant to subtaski. The
range of the state variables describingSi might be a
subset of their range inS (the state space of the over-
all task MDPM ).

• Ii is the initiation set for subtaski. Subtaski could
start only in states belong toIi.

• Ti is the set of terminal states for subtaski. Subtaski
terminates when it reaches a state inTi.

• Ai is the set of actions that can be performed to achieve
subtaski. These actions can either be primitive actions
from A (the set of primitive actions for MDPM ), or
they can be other subtasks.

• Ri is the reward function of subtaski. 2

The goal is to learn a policy for every subtask in the hier-
archy. It gives us a policy for the overall task. This collec-
tion of policies is called ahierarchical policy.

Definition 3: A hierarchical policyπ is a set with a policy
for each of the subtasks in the hierarchy:π = {π0, . . . , πn}.

The hierarchical policy is executed using a stack dis-
cipline, similar to ordinary programming languages. Each
subtask policy takes a state and returns the name of a prim-
itive action to execute or a subtask to invoke. When a sub-
task is invoked, its name is pushed onto the stack and
its policy is executed until it enters one of its termi-
nal states. When a subtask terminates, its name is popped
off the stack. Under a hierarchical policyπ, we de-
fine a multi-step transition probabilityP π

i for each subtaski
in the hierarchy.P π

i (s′, N |s) denotes the probability that ac-
tion πi(s) will cause the system to transition from states to
states′ in N primitive steps.

The action-value function of executing subtaskMa un-
der hierarchical policyπ in states in the context of parent
taskMi, Qπ(i, s, a), is decomposed into two parts: the value
of subtaskMa in states, V π(a, s), and the value of com-
pleting parent taskMi after invoking subtaskMa in state
s, which is called the completion functionCπ(i, s, a) [5, 6].
The value function decomposition is recursively defined as:

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a) (1)

V
π(i, s) =



Qπ(i, s, πi(s)) if i is non-primitive
P

s′
P (s′|s, i)R(s′|s, i) if i is primitive

2.3. Multiagent Setup

In our hierarchical multiagent model, we assume
that there aren agents in the environment, cooperat-
ing with each other to accomplish a task. The task is de-
composed by the designer of the system and its task
graph is built, as described in Section 2.1. We also as-
sume that agents arehomogeneous, i.e., all agents are
given the same task hierarchy.3 We define a group of sub-
tasks ascooperative subtasksat specific levels of the
hierarchy, calledcooperation levels. The set of allcoop-
erative subtasksat acooperation levelis called thecoop-
eration setof that level. Agents actively coordinate only
while making decision atcooperative subtasksand are ig-
norant about other agents at non-cooperative subtasks.
Subtasks chosen to be cooperative are those in which co-
ordination among agents is necessary and has significant
effect on the performance of the overall task. We usu-
ally definecooperative subtasksat highest level(s) of the
hierarchy. Coordination at high-level has two main advan-
tages. First, it increases cooperation skills as agents do not
get confused by low level details. Second, since high-level
subtasks can take a long time to complete, communica-
tion among agents is needed only fairly infrequently. In
this model, we specify policies for non-cooperative sub-
tasks as single-agent policies, and policies forcoopera-
tive subtasksas joint policies.

Definition 4: Under a hierarchical policyπ, eachnon-
cooperative subtaski can be modeled by a SMDP con-
sists of components(Si, Ai, P

π

i
, Ri).

Definition 5: Under a hierarchical policyπ, each co-
operative subtaski located at thelth level of the hierar-
chy can be modeled by a MSMDP as follows:

α is the set ofn agents in the team. We assume that
agents have only local state information and ignore state
of the other agents. Therefore, the state spaceSi is de-
fined as single-agent state spaceSi (not joint state space).
This is certainly an approximation but greatly simpli-
fies the underlying multiagent RL problem. This approx-
imation is based on the fact that an agent can get a rough
idea of what state the other agents might be in just by know-
ing the high-level actions being performed by them. The ac-
tion space is joint and is defined asAi = Ai × (Ul)

n−1,
whereUl =

Sm

k=1
Ak is the union of the action sets of

all the lth level cooperative subtasks, and m is the car-
dinality of the lth level cooperation set. In the taxi do-
main, the set of agents isα = {T1, T2}, root is defined

3 Studying the heterogeneous case where agents are given dissimilar de-
compositions of the overall task would be more challenging and is not
the subject of this paper.



as cooperative subtask, and the highest level of the hi-
erarchy ascooperation level, see Figure 2. Thus,root is
the only member of thecooperation setat this level, and
Uroot = Aroot = {GetB, GetG, GetR,GetY,Wait, Put}.
The joint-action space forroot, Aroot, is specified as the
cross product of theroot action set,Aroot, andUroot. Fi-
nally, since our goal is to design a decentralized multia-
gent RL algorithm, we useτcont termination scheme for
joint-action selection. 2

2.4. Incorporating Communication into the Model

Communication is a way for an agent to obtain local in-
formation of other agents by paying a certain communica-
tion cost. TheCooperative HRLalgorithm described in our
previous paper [10] works under three important assump-
tions, free, reliable, and instantaneous communication, i.e.,
communication cost is zero, no message is lost in the envi-
ronment, and each agent has enough time to receive infor-
mation of its teammates before taking its next action. Since
communication is free, agents do not make decision about
communication. Thus, as soon as an agent selects an action
at acooperative subtask, it broadcasts it to the team. Us-
ing this simple method, and the fact that communication is
reliable and instantaneous, whenever an agent is about to
choose an action at alth levelcooperative subtask, it knows
the subtasks inUl being performed by all its teammates.

However, communication is usually costly and unreli-
able in real-world problems. When communication is not
free, it is no longer optimal for a team that agents always
broadcast actions taken at theircooperative subtasksto their
teammates. Therefore, agents must learn to optimally use
communication by taking into account its long term return
and its immediate cost. In this paper, we examine the case
that communication is not free, but still assume that it is re-
liable and instantaneous. We extend theCooperative HRL
algorithm to include communication decision making and
propose a new algorithm, calledCOM-Cooperative HRL.
In COM-Cooperative HRL, we add a communication level
to the task graph of the problem, below eachcooperation
level, as shown in Figure 3 for the taxi domain. When an
agent is going to select an action at alth levelcooperative
subtask, it first decides whether to communicate (takescom-
municateaction) with other agents to acquire their actions
in Ul, or takesnot-communicateaction and selects its ac-
tion without new information about its teammates. The goal
of our algorithm is to learn a hierarchical policy (a set of
policies for all subtasks including the communication sub-
tasks) to maximize the team utility given the communica-
tion cost. We illustrate the algorithm in more details in the
next section.
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Figure 3. The task graph of the multiagent
taxi domain.

3. Cooperative HRL Algorithm with Commu-
nication (COM-Cooperative HRL)

In COM-Cooperative HRL, agents decide about commu-
nication by comparingQ(Parent(NotCom), s, NotCom)

with Q(Parent(Com), s, Com) + ComCost. If agentj de-
cides not to communicate, it chooses action like a selfish
agent by using its action-value functionQj(NotCom, s, a),
wherea ∈ Children(NotCom). When agentj decides to
communicate, it acquires the actions being executed by all
other agents inUl and then uses its joint-action-value func-
tion Qj(Com, s, a1, . . . , aj−1, aj+1, . . . , an, a), where
a ∈ Children(Com) to select its next action inUl. For in-
stance, in the taxi domain, when taxiT1 drops off a
passenger and is going to pick a new one, it should first de-
cide whether to communicate with taxiT2 in order
to acquire its action inUroot. To make communica-
tion decision, T1 comparesQ1(Root, s, NotCom) with
Q1(Root, s, Com) + ComCost. If it chooses not to com-
municate, it selects its action usingQ1(NotCom, s, a),
wherea ∈ Uroot. If it decides to communicate, after acquir-
ing theT2’s action inUroot, aT2, it selects its action using
Q1(Com, s, aT2, a). We can make the model more compli-
cated by making decision for communication with each
individual agent. In this case, the number of communica-
tion actions would beC1

n−1 + C2
n−1 + . . . + Cn−1

n−1 , where
Cq

p is the number of distinct combinations selectingq out
of p agents. For instance, in a three-agent case, commu-
nication actions for agent 1 would beCom with agent 2,
Com with agent 3andCom with both agents 2 and 3. It in-
creases the number of communication actions and there-
fore the number of parameters to be learned. However, there
are methods to reduce the number of communication ac-
tions in real-world applications. For instance, we can clus-
ter agents in different groups based on their role in the



team and assume each group as a single entity to commu-
nicate with. It reducesn from the number of agents to the
number of groups.

In COM-Cooperative HRL algorithm, Communi-
cate subtasks are configured to store joint comple-
tion function values. The joint completion function for
agent j, Cj(Com, s, a1, . . . , aj−1, aj+1, . . . , an, aj) is de-
fined as the expected discounted reward of completing sub-
taskaj by agentj in the context of the parent taski when
other agents performing subtasksai,∀i ∈ {1, . . . , n}, i 6= j.
In the taxi domain, if taxiT1 communicates with taxiT2,
its value function decomposition would be

Q1(Com, s, GetR, GetB) = V 1(GetB, s)

+ C1(Com, s, GetR, GetB)

which represents the value ofT1 performing subtaskGetB,
whenT2 is executing subtaskGetR. Note that this value is
decomposed into the value of theGetBsubtask and the com-
pletion cost of the remainder of the overall task. IfT1 does
not communicate withT2, its value function decomposition
would be

Q1(NotCom, s, GetB) = V 1(GetB, s) + C1(NotCom, s, GetB)

which represents the value ofT1 performing subtaskGetB,
regardless of the action being executed byT2.

The V and C values are learned through a standard
temporal-difference learning method, based on sample tra-
jectories. Since subtasks are temporally extended in time,
the update rules are based on the SMDP model (see [5, 6]
for details). Completion function and joint completion func-
tion values for an action inUl are updated when this action
is taken underNot-Communicateand Communicatesub-
tasks respectively. In the later case, the other agents’ ac-
tions inUl are known as a result of communication and are
used to update the joint completion function values.

4. Experimental Results

In this section, we demonstrate the performance of the
COM-Cooperative HRLalgorithm using the multiagent taxi
problem described in Section 2.1. We also investigate the re-
lation between communication policy and communication
cost in this domain.

The state variables in this task are locations of taxisT 1
andT 2 (25 values each), status of taxis (2 values each, full
or empty), status of stationsB, G, R, Y (2 values each,
full or empty), destination of stations (4 values each, one of
the other three stations or without destination, which hap-
pens when the station is empty), destination of taxis (5 val-
ues each, one of the four stations or without destination,
which is when taxi is empty). Thus, in the multiagent flat
case, the size of the state space would grow to256 × 106.
The size of theQ table is this number multiplies by 10, the

number of primitive actions,256 × 107. In the hierarchical
selfish case (where each agent acts independently without
communicating with other agents), using state abstraction
and the fact that each agent stores only its own state vari-
ables, the number of theC andV values to be learned is re-
duced to2 × 135, 895 = 271, 790, which is 135,895 values
for each agent. In the hierarchical cooperative case without
communication action, the number of values to be learned
would be2 × 729, 815 = 1, 459, 630. Finally in the hier-
archical cooperative case with communication action, this
number would be2 × 934, 615 = 1, 869, 230. All the ex-
periments in this section were conducted five times and the
results averaged.

Figure 4 shows the throughput of the system for four al-
gorithms, single-agent HRL, selfish multiagent HRL,Co-
operative HRLandCOM-Cooperative HRLwhen commu-
nication cost is zero. TheCooperative HRLand COM-
Cooperative HRLalgorithms use the task graphs in Figures
2 and 3 respectively. As seen in Figure 4,Cooperative HRL
andCOM-Cooperative HRLwith ComCost = 0 have bet-
ter throughput than the selfish multiagent HRL and single-
agent HRL. TheCOM-Cooperative HRLlearns slower than
the Cooperative HRL, due to the more parameters to be
learned in this model. However, it eventually converges to
the same performance asCooperative HRL.
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Figure 4. This figure shows the better
throughput of Cooperative HRL and COM-
Cooperative HRL with ComCost = 0, vs. self-
ish multiagent HRL and single-agent HRL.

Figure 5 compares the above four algorithms in terms
of the average waiting time per passenger. This fig-
ure also demonstrates thatCooperative HRLand COM-
Cooperative HRLwith ComCost = 0, have less aver-
age waiting time per passenger than selfish multiagent
HRL and single-agent HRL. Like the previous exper-
iment, COM-Cooperative HRL eventually converges
to the same performance asCooperative HRL, how-
ever it is slower due to the more parameters to be learned.
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Figure 5. This figure shows that the aver-
age waiting time per passenger in Cooper-
ative HRL and COM-Cooperative HRL with
ComCost = 0, is less than selfish multiagent
HRL and single-agent HRL.

Figure 6 compares the average waiting time per passen-
ger for multiagent selfish HRL andCOM-Cooperative HRL
with ComCost = 0, for three different passenger arrival
rates (5, 10 and 20). It demonstrates that as the passenger ar-
rival rate becomes smaller, the coordination among taxis be-
comes more important. When taxis do not coordinate, there
is a possibility that both taxis go to the same station. In this
case, the first taxi picks up the passenger and the other one
returns empty. This case can be avoided by incorporating
coordination into the system. However, when the passen-
ger arrival rate is high, there is a chance that a new passen-
ger arrives after the first taxi picked up the previous passen-
ger and before the second taxi reaches the station. This pas-
senger will be picked up by the second taxi. In this case, co-
ordination would not be as crucial as the case when the pas-
senger arrival rate is low.

Figure 7 demonstrates the relationship between the com-
munication policy and communication cost. These two
figures show the throughput and the average wait-
ing time per passenger for selfish multiagent HRL and
COM-Cooperative HRLwhen communication cost equals
0, 1, 5, 10. In both figures, as the communication cost in-
creases, the performance of theCOM-Cooperative HRL
becomes closer to the selfish multiagent HRL. It in-
dicates that when communication is expensive, agents
learn not to communicate and the multiagent system be-
comes selfish.

5. Conclusion and Future Work

In this paper, we study learning to communicate and act
in cooperative multiagent systems using hierarchical rein-
forcement learning (HRL). The use of hierarchy speeds up
learning in multiagent domains by making it possible to
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Figure 6. This figure compares the average
waiting time per passenger for multiagent
selfish HRL and COM-Cooperative HRL with
ComCost = 0, for three different passenger
arrival rates (5, 10 and 20). It shows that co-
ordination among taxis becomes more cru-
cial as the passenger arrival rate becomes
smaller.

learn coordination skills at the level of subtasks instead of
primitive actions. We introduce a new cooperative multia-
gent HRL algorithm, calledCOM-Cooperative HRL, by ex-
tending our previously reported algorithm [10] to include
decision making about communication with other agents.
In COM-Cooperative HRL, we define a group of subtasks
ascooperative subtasksat specific levels of the hierarchy,
calledcooperation levels. These are subtasks in which co-
ordination among agents is necessary. Each agent learns
joint-action-values by communicating with its teammates
at cooperative subtasks, and is unaware of them at other
subtasks. We add a communication level to the task hierar-
chy, below eachcooperation level. Before selecting an ac-
tion at acooperative subtask, agents have to decide if it is
worthwhile to communicate with other agents in order to
acquire the actions taken by theircooperative subtasks. It
allows agents to learn a communication policy to balance
the amount of communication for proper coordination, and
communication cost. We study the empirical performance
of the COM-Cooperative HRLalgorithm in a multiagent
taxi problem. We also investigate the relation between com-
munication cost and communication policy in this domain.

A number of extensions would be useful, from studying
the scenario where agents are heterogeneous, to recogniz-
ing the high-level subtasks being performed by other agents
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Figure 7. This figure shows the throughputs
(top) and the average waiting time per pas-
senger (bottom) for selfish multiagent HRL
and COM-Cooperative HRL when communi-
cation cost equals 0, 1, 5 and 10.

using a history of observations instead of direct communi-
cation. In the later case, we assume that each agent can ob-
serve its teammates and uses its observations to extract their
high-level subtasks [3]. Good examples for this approach
are sport games such as soccer, football or basketball, in
which players often extract the strategy being performed
by their teammates, using recent observations instead of di-
rect communication. It is obvious that many other manu-
facturing and robotics problems can benefit from this algo-
rithm. We are currently applyingCOM-Cooperative HRL
to the complex four-agent AGV scheduling problem used
in experiments of our previous paper [10]. Combining these
multiagent algorithms with function approximation and fac-
tored action models, which makes them appropriate for con-
tinuous state problems, is also an important area of research.
The success of the proposed algorithms depends on provid-
ing them with a good initial hierarchical task decomposi-
tion. Therefore, deriving abstractions automatically is an es-
sential problem to study. Finally, studying those communi-
cation features that have not been considered in our model,
such as message delay and probability of loss, is another
fundamental problem that needs to be addressed.
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